Spaces:
Runtime error
Runtime error
Commit
·
3a86bc0
1
Parent(s):
54edba8
Create summary.py
Browse files- summary.py +58 -0
summary.py
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import nltk
|
| 2 |
+
from nltk.corpus import stopwords
|
| 3 |
+
from nltk.tokenize import word_tokenize, sent_tokenize
|
| 4 |
+
import traceback
|
| 5 |
+
import sys
|
| 6 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
nltk.download('stopwords')
|
| 11 |
+
nltk.download('punkt')
|
| 12 |
+
|
| 13 |
+
def summary_nlp(text):
|
| 14 |
+
stopWords = set(stopwords.words("english"))
|
| 15 |
+
words = word_tokenize(text)
|
| 16 |
+
freqTable = dict()
|
| 17 |
+
for word in words:
|
| 18 |
+
word = word.lower()
|
| 19 |
+
if word in stopWords:
|
| 20 |
+
continue
|
| 21 |
+
if word in freqTable:
|
| 22 |
+
freqTable[word] += 1
|
| 23 |
+
else:
|
| 24 |
+
freqTable[word] = 1
|
| 25 |
+
sentences = sent_tokenize(text)
|
| 26 |
+
sentenceValue = dict()
|
| 27 |
+
for sentence in sentences:
|
| 28 |
+
for word, freq in freqTable.items():
|
| 29 |
+
if word in sentence.lower():
|
| 30 |
+
if sentence in sentenceValue:
|
| 31 |
+
sentenceValue[sentence] += freq
|
| 32 |
+
else:
|
| 33 |
+
sentenceValue[sentence] = freq
|
| 34 |
+
sumValues = 0
|
| 35 |
+
for sentence in sentenceValue:
|
| 36 |
+
sumValues += sentenceValue[sentence]
|
| 37 |
+
average = int(sumValues / len(sentenceValue))
|
| 38 |
+
summary = ''
|
| 39 |
+
for sentence in sentences:
|
| 40 |
+
if (sentence in sentenceValue) and (sentenceValue[sentence] > (1.2 * average)):
|
| 41 |
+
summary += " " + sentence
|
| 42 |
+
return summary
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def Summary_BART(text):
|
| 47 |
+
checkpoint = "sshleifer/distilbart-cnn-12-6"
|
| 48 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
| 49 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
|
| 50 |
+
inputs = tokenizer(text,
|
| 51 |
+
max_length=1024,
|
| 52 |
+
truncation=True,
|
| 53 |
+
return_tensors="pt")
|
| 54 |
+
summary_ids = model.generate(inputs["input_ids"])
|
| 55 |
+
summary = tokenizer.batch_decode(summary_ids,
|
| 56 |
+
skip_special_tokens=True,
|
| 57 |
+
clean_up_tokenization_spaces=False)
|
| 58 |
+
return summary[0]
|