Spaces:
Runtime error
Runtime error
Commit
·
3a86bc0
1
Parent(s):
54edba8
Create summary.py
Browse files- summary.py +58 -0
summary.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import nltk
|
2 |
+
from nltk.corpus import stopwords
|
3 |
+
from nltk.tokenize import word_tokenize, sent_tokenize
|
4 |
+
import traceback
|
5 |
+
import sys
|
6 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
7 |
+
|
8 |
+
|
9 |
+
|
10 |
+
nltk.download('stopwords')
|
11 |
+
nltk.download('punkt')
|
12 |
+
|
13 |
+
def summary_nlp(text):
|
14 |
+
stopWords = set(stopwords.words("english"))
|
15 |
+
words = word_tokenize(text)
|
16 |
+
freqTable = dict()
|
17 |
+
for word in words:
|
18 |
+
word = word.lower()
|
19 |
+
if word in stopWords:
|
20 |
+
continue
|
21 |
+
if word in freqTable:
|
22 |
+
freqTable[word] += 1
|
23 |
+
else:
|
24 |
+
freqTable[word] = 1
|
25 |
+
sentences = sent_tokenize(text)
|
26 |
+
sentenceValue = dict()
|
27 |
+
for sentence in sentences:
|
28 |
+
for word, freq in freqTable.items():
|
29 |
+
if word in sentence.lower():
|
30 |
+
if sentence in sentenceValue:
|
31 |
+
sentenceValue[sentence] += freq
|
32 |
+
else:
|
33 |
+
sentenceValue[sentence] = freq
|
34 |
+
sumValues = 0
|
35 |
+
for sentence in sentenceValue:
|
36 |
+
sumValues += sentenceValue[sentence]
|
37 |
+
average = int(sumValues / len(sentenceValue))
|
38 |
+
summary = ''
|
39 |
+
for sentence in sentences:
|
40 |
+
if (sentence in sentenceValue) and (sentenceValue[sentence] > (1.2 * average)):
|
41 |
+
summary += " " + sentence
|
42 |
+
return summary
|
43 |
+
|
44 |
+
|
45 |
+
|
46 |
+
def Summary_BART(text):
|
47 |
+
checkpoint = "sshleifer/distilbart-cnn-12-6"
|
48 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
49 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
|
50 |
+
inputs = tokenizer(text,
|
51 |
+
max_length=1024,
|
52 |
+
truncation=True,
|
53 |
+
return_tensors="pt")
|
54 |
+
summary_ids = model.generate(inputs["input_ids"])
|
55 |
+
summary = tokenizer.batch_decode(summary_ids,
|
56 |
+
skip_special_tokens=True,
|
57 |
+
clean_up_tokenization_spaces=False)
|
58 |
+
return summary[0]
|