Spaces:
Sleeping
Sleeping
Upload main.py
Browse files
main.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np # linear algebra
|
2 |
+
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
|
3 |
+
import time
|
4 |
+
import torch
|
5 |
+
from transformers import T5ForConditionalGeneration,T5Tokenizer
|
6 |
+
import random
|
7 |
+
import spacy
|
8 |
+
import zipfile
|
9 |
+
import os
|
10 |
+
os.system('pip install git+https://github.com/boudinfl/pke.git')
|
11 |
+
os.system('python -m nltk.downloader universal_tagset')
|
12 |
+
os.system('python -m spacy download en')
|
13 |
+
os.system('wget https://github.com/explosion/sense2vec/releases/download/v1.0.0/s2v_reddit_2015_md.tar.gz')
|
14 |
+
os.system('tar -xvf s2v_reddit_2015_md.tar.gz')
|
15 |
+
os.system('python -m spacy download en_core_web_sm')
|
16 |
+
import git
|
17 |
+
import json
|
18 |
+
from sense2vec import Sense2Vec
|
19 |
+
import requests
|
20 |
+
from collections import OrderedDict
|
21 |
+
import string
|
22 |
+
import pke
|
23 |
+
import nltk
|
24 |
+
import numpy
|
25 |
+
import en_core_web_sm
|
26 |
+
from nltk import FreqDist
|
27 |
+
nltk.download('brown', quiet=True, force=True)
|
28 |
+
nltk.download('stopwords', quiet=True, force=True)
|
29 |
+
nltk.download('popular', quiet=True, force=True)
|
30 |
+
from nltk.corpus import stopwords
|
31 |
+
from nltk.corpus import brown
|
32 |
+
from similarity.normalized_levenshtein import NormalizedLevenshtein
|
33 |
+
from nltk.tokenize import sent_tokenize
|
34 |
+
from flashtext import KeywordProcessor
|
35 |
+
from encoding import beam_search_decoding
|
36 |
+
from mcq import tokenize_sentences
|
37 |
+
from mcq import get_keywords
|
38 |
+
from mcq import get_sentences_for_keyword
|
39 |
+
from mcq import generate_questions_mcq
|
40 |
+
from mcq import generate_normal_questions
|
41 |
+
import time
|
42 |
+
tokenizer = T5Tokenizer.from_pretrained('t5-large')
|
43 |
+
model = T5ForConditionalGeneration.from_pretrained('Parth/result')
|
44 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
45 |
+
model.to(device)
|
46 |
+
# model.eval()
|
47 |
+
device = device
|
48 |
+
model = model
|
49 |
+
nlp = spacy.load('en_core_web_sm')
|
50 |
+
s2v = Sense2Vec().from_disk('s2v_old')
|
51 |
+
fdist = FreqDist(brown.words())
|
52 |
+
normalized_levenshtein = NormalizedLevenshtein()
|
53 |
+
def set_seed(seed):
|
54 |
+
numpy.random.seed(seed)
|
55 |
+
torch.manual_seed(seed)
|
56 |
+
if torch.cuda.is_available():
|
57 |
+
torch.cuda.manual_seed_all(seed)
|
58 |
+
set_seed(42)
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
def predict_mcq(payload):
|
63 |
+
start = time.time()
|
64 |
+
inp = {
|
65 |
+
"input_text": payload.get("input_text"),
|
66 |
+
"max_questions": payload.get("max_questions", 10)
|
67 |
+
}
|
68 |
+
|
69 |
+
text = inp['input_text']
|
70 |
+
sentences = tokenize_sentences(text)
|
71 |
+
joiner = " "
|
72 |
+
modified_text = joiner.join(sentences)
|
73 |
+
|
74 |
+
|
75 |
+
keywords = get_keywords(nlp,modified_text,inp['max_questions'],s2v,fdist,normalized_levenshtein,len(sentences) )
|
76 |
+
|
77 |
+
|
78 |
+
keyword_sentence_mapping = get_sentences_for_keyword(keywords, sentences)
|
79 |
+
|
80 |
+
for k in keyword_sentence_mapping.keys():
|
81 |
+
text_snippet = " ".join(keyword_sentence_mapping[k][:3])
|
82 |
+
keyword_sentence_mapping[k] = text_snippet
|
83 |
+
|
84 |
+
|
85 |
+
final_output = {}
|
86 |
+
|
87 |
+
if len(keyword_sentence_mapping.keys()) == 0:
|
88 |
+
return final_output
|
89 |
+
else:
|
90 |
+
try:
|
91 |
+
generated_questions = generate_questions_mcq(keyword_sentence_mapping,device,tokenizer,model,s2v,normalized_levenshtein)
|
92 |
+
|
93 |
+
except:
|
94 |
+
return final_output
|
95 |
+
end = time.time()
|
96 |
+
|
97 |
+
final_output["statement"] = modified_text
|
98 |
+
final_output["questions"] = generated_questions["questions"]
|
99 |
+
final_output["time_taken"] = end-start
|
100 |
+
|
101 |
+
if torch.device=='cuda':
|
102 |
+
torch.cuda.empty_cache()
|
103 |
+
|
104 |
+
return final_output
|