Spaces:
Sleeping
Sleeping
from keras.models import load_model | |
import cv2 | |
import gradio as gr | |
import os | |
pox_model = load_model('fowl_pox_model.keras', compile=True) | |
class_name = {0: 'Healthy', 1: 'Chicken have fowl pox', 2: 'Unknown'} | |
status = {0: 'Non Critical', 1: 'Critical', 2: 'N/A'} | |
recommend = {0: 'No need medicine', 1: 'Panadol', 2: 'N/A'} | |
def predict(img): | |
# Resize the image to the required size for the model | |
img_resized = cv2.resize(img, (256, 256)) | |
# Make the prediction | |
pred = pox_model.predict(img_resized.reshape(1, 256, 256, 3)).argmax() | |
# Get the prediction details | |
prediction_label = class_name[pred] | |
prediction_status = status[pred] | |
recommendation = recommend[pred] | |
return prediction_label, prediction_status, recommendation | |
interface = gr.Interface( | |
fn=predict, | |
inputs='image', | |
outputs=[ | |
gr.components.Textbox(label='Disease Name'), | |
gr.components.Textbox(label='Disease status'), | |
gr.components.Textbox(label='Disease medicine') | |
], | |
examples=[ | |
['download (1).jpeg'], ['download (2).jpeg'], ['download (3).jpeg'], | |
['images (1).jpeg'], ['images (2).jpeg'], ['images (3).jpeg'] | |
], | |
description="Upload an image of a chicken to predict if it has fowl pox. You will receive a status report and a recommended treatment." | |
) | |
interface.launch(debug=True) | |