|
import gradio as gr |
|
import cv2 |
|
from keras.models import load_model |
|
|
|
my_model=load_model('Liver_model.h5',compile=True) |
|
class_num={0:'Healthy',1:'Un-Healthy'} |
|
|
|
def Predict(Image): |
|
Image=cv2.resize(Image,(224,224)) |
|
class_no=my_model.predict(Image.reshape(1,224,224,3)).argmax() |
|
class_name=class_num.get(class_no) |
|
return class_name |
|
|
|
|
|
interface=gr.Interface(fn=Predict,inputs='image',outputs=[gr.components.Textbox(label="Class Name")], |
|
title="This Space predict the liver of Chicken is healthy or un-healthy", |
|
examples=[['Test1.jpg'],['Test2.jpeg'],['Test3.jpeg']]) |
|
interface.launch(debug=True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|