from keras.models import load_model import cv2 import gradio as gr intestine_model=load_model('Intestine_model.h5') intestine_class_name={0:'Healthy',1:'Intestine have ulcer button'} def predict_intestine(img): img=cv2.resize(img,(224,224)) prediction=intestine_model.predict(img.reshape(1,224,224,3)).argmax() return intestine_class_name[prediction] interface=gr.Interface(fn=predict_intestine,inputs='image',outputs=[gr.components.Textbox(label='Result')]) interface.launch(debug=True)