|
from keras.models import load_model |
|
import cv2 |
|
from tensorflow.keras.preprocessing.image import ImageDataGenerator |
|
import gradio as gr |
|
import numpy as np |
|
|
|
heart_model=load_model('Chicken_Heart_model.h5',compile=True) |
|
class_name={0:'Dilation(eccentric)',1:'Hepatoma',2:'Hypertrophy(concentric)',3:'Hypertrophy(physiological)',4:'Infraction Damage',5:'Normal'} |
|
|
|
def Heart_Disease_prediction(img): |
|
img = img.reshape((1, img.shape[0], img.shape[1], img.shape[2])) |
|
|
|
|
|
datagen = ImageDataGenerator( |
|
rotation_range=30, |
|
width_shift_range=0.1, |
|
height_shift_range=0.1, |
|
shear_range=0.1, |
|
zoom_range=0.1, |
|
horizontal_flip=True, |
|
fill_mode="nearest", |
|
) |
|
|
|
augmented_images = datagen.flow(img, batch_size=1) |
|
|
|
augmented_img = next(augmented_images)[0] |
|
img=cv2.resize(augmented_img.astype(np.uint8),(128,128)) |
|
class_no=heart_model.predict(img.reshape(1,128,128,3)).argmax() |
|
name=class_name.get(class_no) |
|
return name |
|
|
|
|
|
interface=gr.Interface(fn=Heart_Disease_prediction,inputs='image',outputs=[gr.components.Textbox(label='Disease Name')], |
|
examples=[['Image1.PNG'],['Image2.PNG'],['Image3.PNG'],['Image4.PNG'], |
|
['Image5.PNG'],['Image6.PNG'],['Image7.PNG'],['Image8.PNG'], |
|
['Image9.PNG'],['Image10.PNG'],['Image11.PNG']]) |
|
|
|
interface.launch(debug=True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|