|
import cv2 |
|
from keras.models import load_model |
|
import gradio as gr |
|
import numpy as np |
|
from tensorflow.keras.preprocessing.image import ImageDataGenerator |
|
|
|
model = load_model('Chicken_Gizzard_Updated_model.h5',compile=True) |
|
class_names={0:'Normal Appearance', |
|
1:'The proventriculusof infected chickens showing several ecchymotic hemorrhages on the tip of the proventricular glandsat 3 dpi', |
|
2:'edema with increased number of solitary and coalesced ecchymotic hemorrhages on theproventricular glands at 4 dpi', |
|
3:'and numerous hemorrhagic spots coalesced to form brush paintappearance on the entire mucosa at 5 dpi'} |
|
|
|
def Predict_Gizzard(img): |
|
img = img.reshape((1, img.shape[0], img.shape[1], img.shape[2])) |
|
|
|
|
|
datagen = ImageDataGenerator( |
|
rotation_range=30, |
|
width_shift_range=0.1, |
|
height_shift_range=0.1, |
|
shear_range=0.1, |
|
zoom_range=0.1, |
|
horizontal_flip=True, |
|
fill_mode="nearest", |
|
) |
|
|
|
augmented_images = datagen.flow(img, batch_size=1) |
|
|
|
augmented_img = next(augmented_images)[0] |
|
img=cv2.resize(augmented_img.astype(np.uint8),(224,224)) |
|
class_no=model.predict(img.reshape(1,224,224,3)).argmax() |
|
name=class_names.get(class_no) |
|
return name |
|
|
|
|
|
interface=gr.Interface(fn=Predict_Gizzard,inputs='image',outputs=[gr.components.Textbox(label='Your Result')], |
|
examples=[['Class A.PNG'],['Class B.PNG'],['Class C.PNG'],['Class D.PNG']]) |
|
|
|
interface.launch(debug=True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|