Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer,
|
3 |
from sentence_transformers import SentenceTransformer
|
4 |
import fitz # PyMuPDF
|
5 |
import os
|
@@ -9,10 +9,9 @@ summarization_model_name = 'facebook/bart-large-cnn'
|
|
9 |
tokenizer = AutoTokenizer.from_pretrained(summarization_model_name)
|
10 |
summarization_model = AutoModelForSeq2SeqLM.from_pretrained(summarization_model_name)
|
11 |
|
12 |
-
qa_model_name = '
|
13 |
qa_tokenizer = AutoTokenizer.from_pretrained(qa_model_name)
|
14 |
qa_model = AutoModelForQuestionAnswering.from_pretrained(qa_model_name)
|
15 |
-
qa_pipeline = pipeline('question-answering', model=qa_model, tokenizer=qa_tokenizer)
|
16 |
|
17 |
# Function to extract text from a PDF file
|
18 |
def extract_text_from_pdf(file):
|
@@ -28,6 +27,15 @@ def summarize_document(document):
|
|
28 |
summary_ids = summarization_model.generate(inputs['input_ids'], max_length=150, min_length=30, length_penalty=2.0, num_beams=4, early_stopping=True)
|
29 |
return tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
# Streamlit app
|
32 |
st.title("PDF Summarizer and Q&A")
|
33 |
st.write("Upload a PDF file to get a summary and ask questions about the content.")
|
@@ -57,9 +65,9 @@ if uploaded_file is not None:
|
|
57 |
if st.button("Get Answer"):
|
58 |
if question:
|
59 |
with st.spinner('Generating answer...'):
|
60 |
-
answer =
|
61 |
st.write("**Answer:**")
|
62 |
-
st.write(answer
|
63 |
else:
|
64 |
st.write("Please enter a question.")
|
65 |
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, AutoModelForQuestionAnswering
|
3 |
from sentence_transformers import SentenceTransformer
|
4 |
import fitz # PyMuPDF
|
5 |
import os
|
|
|
9 |
tokenizer = AutoTokenizer.from_pretrained(summarization_model_name)
|
10 |
summarization_model = AutoModelForSeq2SeqLM.from_pretrained(summarization_model_name)
|
11 |
|
12 |
+
qa_model_name = 'deepset/bert-large-uncased-whole-word-masking-squad2'
|
13 |
qa_tokenizer = AutoTokenizer.from_pretrained(qa_model_name)
|
14 |
qa_model = AutoModelForQuestionAnswering.from_pretrained(qa_model_name)
|
|
|
15 |
|
16 |
# Function to extract text from a PDF file
|
17 |
def extract_text_from_pdf(file):
|
|
|
27 |
summary_ids = summarization_model.generate(inputs['input_ids'], max_length=150, min_length=30, length_penalty=2.0, num_beams=4, early_stopping=True)
|
28 |
return tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
29 |
|
30 |
+
# Function to get answer to question
|
31 |
+
def get_answer(question, context):
|
32 |
+
inputs = qa_tokenizer(question, context, return_tensors="pt")
|
33 |
+
start_positions, end_positions = qa_model(**inputs)
|
34 |
+
answer_start = torch.argmax(start_positions)
|
35 |
+
answer_end = torch.argmax(end_positions) + 1
|
36 |
+
answer = qa_tokenizer.convert_tokens_to_string(qa_tokenizer.convert_ids_to_tokens(inputs["input_ids"][0][answer_start:answer_end]))
|
37 |
+
return answer
|
38 |
+
|
39 |
# Streamlit app
|
40 |
st.title("PDF Summarizer and Q&A")
|
41 |
st.write("Upload a PDF file to get a summary and ask questions about the content.")
|
|
|
65 |
if st.button("Get Answer"):
|
66 |
if question:
|
67 |
with st.spinner('Generating answer...'):
|
68 |
+
answer = get_answer(question, document_text)
|
69 |
st.write("**Answer:**")
|
70 |
+
st.write(answer)
|
71 |
else:
|
72 |
st.write("Please enter a question.")
|
73 |
|