Update app.py
Browse files
app.py
CHANGED
@@ -1,793 +1,348 @@
|
|
1 |
import gradio as gr
|
2 |
import requests
|
3 |
import os
|
4 |
-
import pandas as pd
|
5 |
import json
|
6 |
from typing import List, Dict, Optional
|
7 |
import time
|
8 |
-
from datetime import datetime
|
9 |
|
10 |
-
#
|
11 |
-
|
12 |
-
# Text Generation Models - HF Inference API
|
13 |
-
"microsoft/DialoGPT-medium": {
|
14 |
-
"provider": "HF Inference",
|
15 |
-
"pipeline": "text-generation",
|
16 |
-
"description": "Conversational AI model for dialog generation",
|
17 |
-
"endpoint": "https://api-inference.huggingface.co/models/microsoft/DialoGPT-medium",
|
18 |
-
"api_format": "hf_inference"
|
19 |
-
},
|
20 |
-
"meta-llama/Llama-3.1-8B-Instruct": {
|
21 |
-
"provider": "HF Inference",
|
22 |
-
"pipeline": "text-generation",
|
23 |
-
"description": "Meta's Llama 3.1 8B Instruct model",
|
24 |
-
"endpoint": "https://api-inference.huggingface.co/models/meta-llama/Llama-3.1-8B-Instruct",
|
25 |
-
"api_format": "hf_inference"
|
26 |
-
},
|
27 |
-
"deepseek-ai/DeepSeek-V3-0324": {
|
28 |
-
"provider": "HF Inference",
|
29 |
-
"pipeline": "text-generation",
|
30 |
-
"description": "DeepSeek V3 state-of-the-art conversational model",
|
31 |
-
"endpoint": "https://router.huggingface.co/v1/chat/completions",
|
32 |
-
"api_format": "openai_compatible"
|
33 |
-
},
|
34 |
-
|
35 |
-
# Cerebras Models (Chat completion LLM only)
|
36 |
"meta-llama/Llama-3.3-70B-Instruct": {
|
37 |
"provider": "Cerebras",
|
38 |
-
"
|
39 |
-
"description": "Meta's
|
40 |
-
"
|
41 |
-
"
|
42 |
-
},
|
43 |
-
|
44 |
-
# Cohere Models (Chat completion LLM + VLM)
|
45 |
-
"cohere/command-r-plus": {
|
46 |
-
"provider": "Cohere",
|
47 |
-
"pipeline": "text-generation",
|
48 |
-
"description": "Cohere's Command R+ enterprise-grade NLP model",
|
49 |
-
"endpoint": "https://router.huggingface.co/v1/chat/completions",
|
50 |
-
"api_format": "openai_compatible"
|
51 |
-
},
|
52 |
-
|
53 |
-
# Fal AI Models (Text-to-Image, Text-to-Video, Speech-to-Text)
|
54 |
-
"black-forest-labs/FLUX.1-schnell": {
|
55 |
-
"provider": "Fal AI",
|
56 |
-
"pipeline": "text-to-image",
|
57 |
-
"description": "FLUX.1 schnell model for fast image generation via Fal AI",
|
58 |
-
"endpoint": "https://router.huggingface.co/v1/text-to-image",
|
59 |
-
"api_format": "hf_router"
|
60 |
},
|
61 |
-
|
62 |
-
# Featherless AI Models (Chat completion LLM + VLM)
|
63 |
-
"meta-llama/Llama-3.1-70B-Instruct": {
|
64 |
-
"provider": "Featherless AI",
|
65 |
-
"pipeline": "text-generation",
|
66 |
-
"description": "Meta's Llama 3.1 70B Instruct via Featherless AI",
|
67 |
-
"endpoint": "https://router.huggingface.co/v1/chat/completions",
|
68 |
-
"api_format": "openai_compatible"
|
69 |
-
},
|
70 |
-
|
71 |
-
# Fireworks Models (Chat completion LLM + VLM)
|
72 |
-
"accounts/fireworks/models/llama-v3p1-8b-instruct": {
|
73 |
-
"provider": "Fireworks",
|
74 |
-
"pipeline": "text-generation",
|
75 |
-
"description": "Llama 3.1 8B Instruct via Fireworks AI production-ready serving",
|
76 |
-
"endpoint": "https://router.huggingface.co/v1/chat/completions",
|
77 |
-
"api_format": "openai_compatible"
|
78 |
-
},
|
79 |
-
|
80 |
-
# Groq Models (Chat completion LLM only)
|
81 |
"deepseek-ai/DeepSeek-R1": {
|
82 |
-
"provider": "Groq",
|
83 |
-
"
|
84 |
-
"description": "
|
85 |
-
"
|
86 |
-
"
|
87 |
-
},
|
88 |
-
|
89 |
-
# Hyperbolic Models (Chat completion LLM + VLM)
|
90 |
-
"meta-llama/Meta-Llama-3-8B-Instruct": {
|
91 |
-
"provider": "Hyperbolic",
|
92 |
-
"pipeline": "text-generation",
|
93 |
-
"description": "Meta's Llama 3 8B Instruct via Hyperbolic",
|
94 |
-
"endpoint": "https://router.huggingface.co/v1/chat/completions",
|
95 |
-
"api_format": "openai_compatible"
|
96 |
-
},
|
97 |
-
|
98 |
-
# Nebius Models (Chat completion LLM + VLM, Feature Extraction, Text-to-Image)
|
99 |
-
"mistralai/Mixtral-8x7B-Instruct-v0.1": {
|
100 |
-
"provider": "Nebius",
|
101 |
-
"pipeline": "text-generation",
|
102 |
-
"description": "Mistral's Mixtral 8x7B Instruct via Nebius cloud platform",
|
103 |
-
"endpoint": "https://router.huggingface.co/v1/chat/completions",
|
104 |
-
"api_format": "openai_compatible"
|
105 |
-
},
|
106 |
-
|
107 |
-
# Novita Models (Chat completion LLM + VLM, Text-to-Video)
|
108 |
-
"Qwen/Qwen2.5-72B-Instruct": {
|
109 |
-
"provider": "Novita",
|
110 |
-
"pipeline": "text-generation",
|
111 |
-
"description": "Qwen 2.5 72B Instruct via Novita",
|
112 |
-
"endpoint": "https://router.huggingface.co/v1/chat/completions",
|
113 |
-
"api_format": "openai_compatible"
|
114 |
},
|
115 |
-
|
116 |
-
# Nscale Models (Chat completion LLM + VLM, Feature Extraction, Text-to-Image)
|
117 |
-
"microsoft/Phi-3-medium-4k-instruct": {
|
118 |
-
"provider": "Nscale",
|
119 |
-
"pipeline": "text-generation",
|
120 |
-
"description": "Microsoft Phi-3 Medium via Nscale",
|
121 |
-
"endpoint": "https://router.huggingface.co/v1/chat/completions",
|
122 |
-
"api_format": "openai_compatible"
|
123 |
-
},
|
124 |
-
|
125 |
-
# Replicate Models (Text-to-Image, Text-to-Video, Speech-to-Text)
|
126 |
-
"stabilityai/stable-diffusion-xl-base-1.0": {
|
127 |
-
"provider": "Replicate",
|
128 |
-
"pipeline": "text-to-image",
|
129 |
-
"description": "Stable Diffusion XL via Replicate cloud platform",
|
130 |
-
"endpoint": "https://router.huggingface.co/v1/text-to-image",
|
131 |
-
"api_format": "hf_router"
|
132 |
-
},
|
133 |
-
|
134 |
-
# SambaNova Models (Chat completion LLM, Feature Extraction)
|
135 |
"meta-llama/Meta-Llama-3.1-405B-Instruct": {
|
136 |
"provider": "SambaNova",
|
137 |
-
"
|
138 |
-
"description": "Meta's
|
139 |
-
"
|
140 |
-
"
|
141 |
},
|
142 |
-
|
143 |
-
# Together AI Models (Chat completion LLM + VLM, Text-to-Image)
|
144 |
"meta-llama/Meta-Llama-3-70B-Instruct": {
|
145 |
"provider": "Together",
|
146 |
-
"
|
147 |
-
"description": "
|
148 |
-
"
|
149 |
-
"
|
150 |
-
},
|
151 |
-
|
152 |
-
# HF Inference - Additional Models for various tasks
|
153 |
-
"black-forest-labs/FLUX.1-dev": {
|
154 |
-
"provider": "HF Inference",
|
155 |
-
"pipeline": "text-to-image",
|
156 |
-
"description": "FLUX.1 development model for high-quality text-to-image generation",
|
157 |
-
"endpoint": "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev",
|
158 |
-
"api_format": "hf_inference"
|
159 |
-
},
|
160 |
-
"openai/whisper-large-v3": {
|
161 |
-
"provider": "HF Inference",
|
162 |
-
"pipeline": "automatic-speech-recognition",
|
163 |
-
"description": "Whisper Large V3 for speech recognition",
|
164 |
-
"endpoint": "https://api-inference.huggingface.co/models/openai/whisper-large-v3",
|
165 |
-
"api_format": "hf_inference"
|
166 |
-
},
|
167 |
-
"sentence-transformers/all-MiniLM-L6-v2": {
|
168 |
-
"provider": "HF Inference",
|
169 |
-
"pipeline": "feature-extraction",
|
170 |
-
"description": "Sentence transformer for embeddings and semantic search",
|
171 |
-
"endpoint": "https://api-inference.huggingface.co/models/sentence-transformers/all-MiniLM-L6-v2",
|
172 |
-
"api_format": "hf_inference"
|
173 |
-
},
|
174 |
-
"cardiffnlp/twitter-roberta-base-sentiment-latest": {
|
175 |
-
"provider": "HF Inference",
|
176 |
-
"pipeline": "text-classification",
|
177 |
-
"description": "Sentiment analysis model trained on Twitter data",
|
178 |
-
"endpoint": "https://api-inference.huggingface.co/models/cardiffnlp/twitter-roberta-base-sentiment-latest",
|
179 |
-
"api_format": "hf_inference"
|
180 |
-
}
|
181 |
-
}
|
182 |
-
|
183 |
-
# Updated provider configuration for current HF Inference Providers ecosystem
|
184 |
-
PROVIDER_CONFIG = {
|
185 |
-
"HF Inference": {
|
186 |
-
"description": "HuggingFace's native serverless inference API",
|
187 |
-
"auth_header": "Authorization",
|
188 |
-
"auth_format": "Bearer {token}",
|
189 |
-
"env_var": "HF_TOKEN",
|
190 |
-
"base_url": "https://api-inference.huggingface.co",
|
191 |
-
"pricing": "Free tier + pay-per-use",
|
192 |
-
"docs_url": "https://huggingface.co/docs/inference-providers/providers/hf-inference",
|
193 |
-
"capabilities": ["Chat completion (LLM)", "Chat completion (VLM)", "Feature Extraction", "Text to Image", "Speech to text"]
|
194 |
-
},
|
195 |
-
"Cerebras": {
|
196 |
-
"description": "Ultra-fast inference with Language Processing Units (LPUs)",
|
197 |
-
"auth_header": "Authorization",
|
198 |
-
"auth_format": "Bearer {token}",
|
199 |
-
"env_var": "HF_TOKEN",
|
200 |
-
"base_url": "https://router.huggingface.co/v1",
|
201 |
-
"pricing": "Pay-per-token via HF routing",
|
202 |
-
"docs_url": "https://huggingface.co/docs/inference-providers/providers/cerebras",
|
203 |
-
"capabilities": ["Chat completion (LLM)"]
|
204 |
},
|
205 |
-
"
|
206 |
-
"
|
207 |
-
"
|
208 |
-
"
|
209 |
-
"
|
210 |
-
"
|
211 |
-
"pricing": "Pay-per-token via HF routing",
|
212 |
-
"docs_url": "https://huggingface.co/docs/inference-providers/providers/cohere",
|
213 |
-
"capabilities": ["Chat completion (LLM)", "Chat completion (VLM)"]
|
214 |
-
},
|
215 |
-
"Fal AI": {
|
216 |
-
"description": "Fast and reliable model inference platform",
|
217 |
-
"auth_header": "Authorization",
|
218 |
-
"auth_format": "Bearer {token}",
|
219 |
-
"env_var": "HF_TOKEN",
|
220 |
-
"base_url": "https://router.huggingface.co/v1",
|
221 |
-
"pricing": "Pay-per-token via HF routing",
|
222 |
-
"docs_url": "https://huggingface.co/docs/inference-providers/providers/fal-ai",
|
223 |
-
"capabilities": ["Text to Image", "Text to video", "Speech to text"]
|
224 |
-
},
|
225 |
-
"Featherless AI": {
|
226 |
-
"description": "Optimized inference for open-source models",
|
227 |
-
"auth_header": "Authorization",
|
228 |
-
"auth_format": "Bearer {token}",
|
229 |
-
"env_var": "HF_TOKEN",
|
230 |
-
"base_url": "https://router.huggingface.co/v1",
|
231 |
-
"pricing": "Pay-per-token via HF routing",
|
232 |
-
"docs_url": "https://huggingface.co/docs/inference-providers/providers/featherless-ai",
|
233 |
-
"capabilities": ["Chat completion (LLM)", "Chat completion (VLM)"]
|
234 |
-
},
|
235 |
-
"Fireworks": {
|
236 |
-
"description": "Production-ready inference with fast model serving",
|
237 |
-
"auth_header": "Authorization",
|
238 |
-
"auth_format": "Bearer {token}",
|
239 |
-
"env_var": "HF_TOKEN",
|
240 |
-
"base_url": "https://router.huggingface.co/v1",
|
241 |
-
"pricing": "Pay-per-token via HF routing",
|
242 |
-
"docs_url": "https://huggingface.co/docs/inference-providers/providers/fireworks-ai",
|
243 |
-
"capabilities": ["Chat completion (LLM)", "Chat completion (VLM)"]
|
244 |
-
},
|
245 |
-
"Groq": {
|
246 |
-
"description": "Fast inference with specialized hardware acceleration",
|
247 |
-
"auth_header": "Authorization",
|
248 |
-
"auth_format": "Bearer {token}",
|
249 |
-
"env_var": "HF_TOKEN",
|
250 |
-
"base_url": "https://router.huggingface.co/v1",
|
251 |
-
"pricing": "Pay-per-token via HF routing",
|
252 |
-
"docs_url": "https://huggingface.co/docs/inference-providers/providers/groq",
|
253 |
-
"capabilities": ["Chat completion (LLM)"]
|
254 |
-
},
|
255 |
-
"Hyperbolic": {
|
256 |
-
"description": "GPU-accelerated inference platform",
|
257 |
-
"auth_header": "Authorization",
|
258 |
-
"auth_format": "Bearer {token}",
|
259 |
-
"env_var": "HF_TOKEN",
|
260 |
-
"base_url": "https://router.huggingface.co/v1",
|
261 |
-
"pricing": "Pay-per-token via HF routing",
|
262 |
-
"docs_url": "https://huggingface.co/docs/inference-providers/providers/hyperbolic",
|
263 |
-
"capabilities": ["Chat completion (LLM)", "Chat completion (VLM)"]
|
264 |
-
},
|
265 |
-
"Nebius": {
|
266 |
-
"description": "Cloud-based AI infrastructure platform",
|
267 |
-
"auth_header": "Authorization",
|
268 |
-
"auth_format": "Bearer {token}",
|
269 |
-
"env_var": "HF_TOKEN",
|
270 |
-
"base_url": "https://router.huggingface.co/v1",
|
271 |
-
"pricing": "Pay-per-token via HF routing",
|
272 |
-
"docs_url": "https://huggingface.co/docs/inference-providers/providers/nebius",
|
273 |
-
"capabilities": ["Chat completion (LLM)", "Chat completion (VLM)", "Feature Extraction", "Text to Image"]
|
274 |
-
},
|
275 |
-
"Novita": {
|
276 |
-
"description": "AI inference platform with video generation",
|
277 |
-
"auth_header": "Authorization",
|
278 |
-
"auth_format": "Bearer {token}",
|
279 |
-
"env_var": "HF_TOKEN",
|
280 |
-
"base_url": "https://router.huggingface.co/v1",
|
281 |
-
"pricing": "Pay-per-token via HF routing",
|
282 |
-
"docs_url": "https://huggingface.co/docs/inference-providers/providers/novita",
|
283 |
-
"capabilities": ["Chat completion (LLM)", "Chat completion (VLM)", "Text to video"]
|
284 |
-
},
|
285 |
-
"Nscale": {
|
286 |
-
"description": "Scalable AI model deployment platform",
|
287 |
-
"auth_header": "Authorization",
|
288 |
-
"auth_format": "Bearer {token}",
|
289 |
-
"env_var": "HF_TOKEN",
|
290 |
-
"base_url": "https://router.huggingface.co/v1",
|
291 |
-
"pricing": "Pay-per-token via HF routing",
|
292 |
-
"docs_url": "https://huggingface.co/docs/inference-providers/providers/nscale",
|
293 |
-
"capabilities": ["Chat completion (LLM)", "Chat completion (VLM)", "Feature Extraction", "Text to Image"]
|
294 |
-
},
|
295 |
-
"Replicate": {
|
296 |
-
"description": "Run models in the cloud with simple API",
|
297 |
-
"auth_header": "Authorization",
|
298 |
-
"auth_format": "Bearer {token}",
|
299 |
-
"env_var": "HF_TOKEN",
|
300 |
-
"base_url": "https://router.huggingface.co/v1",
|
301 |
-
"pricing": "Pay-per-token via HF routing",
|
302 |
-
"docs_url": "https://huggingface.co/docs/inference-providers/providers/replicate",
|
303 |
-
"capabilities": ["Text to Image", "Text to video", "Speech to text"]
|
304 |
},
|
305 |
-
"
|
306 |
-
"
|
307 |
-
"
|
308 |
-
"
|
309 |
-
"
|
310 |
-
"
|
311 |
-
"pricing": "Pay-per-token via HF routing",
|
312 |
-
"docs_url": "https://huggingface.co/docs/inference-providers/providers/sambanova",
|
313 |
-
"capabilities": ["Chat completion (LLM)", "Feature Extraction"]
|
314 |
},
|
315 |
-
"
|
316 |
-
"
|
317 |
-
"
|
318 |
-
"
|
319 |
-
"
|
320 |
-
"
|
321 |
-
"pricing": "Pay-per-token via HF routing",
|
322 |
-
"docs_url": "https://huggingface.co/docs/inference-providers/providers/together",
|
323 |
-
"capabilities": ["Chat completion (LLM)", "Chat completion (VLM)", "Text to Image"]
|
324 |
}
|
325 |
}
|
326 |
|
327 |
-
class
|
328 |
def __init__(self):
|
329 |
-
self.allowed_models = ALLOWED_MODELS
|
330 |
-
self.provider_config = PROVIDER_CONFIG
|
331 |
self.hf_token = os.getenv("HF_TOKEN")
|
332 |
-
|
333 |
if not self.hf_token:
|
334 |
-
raise ValueError("HF_TOKEN environment variable is required
|
335 |
-
|
336 |
-
self.headers = {"Authorization": f"Bearer {self.hf_token}"}
|
337 |
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
provider = model_info["provider"]
|
343 |
-
|
344 |
-
models.append({
|
345 |
-
"model_id": model_id,
|
346 |
-
"provider": provider,
|
347 |
-
"pipeline": model_info["pipeline"],
|
348 |
-
"description": model_info["description"],
|
349 |
-
"endpoint": model_info["endpoint"],
|
350 |
-
"api_format": model_info["api_format"],
|
351 |
-
"status": self._check_model_status(model_id, provider),
|
352 |
-
"pricing": self.provider_config[provider]["pricing"]
|
353 |
-
})
|
354 |
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
"""Check if a specific model is currently available via HF Inference Providers"""
|
359 |
-
try:
|
360 |
-
# For models using the new HF Router API
|
361 |
-
if provider in ["Cerebras", "Groq", "Together", "Fireworks", "Replicate", "Cohere", "Fal AI"]:
|
362 |
-
# Use the models endpoint to check availability
|
363 |
-
url = "https://router.huggingface.co/v1/models"
|
364 |
-
response = requests.get(url, headers=self.headers, timeout=5)
|
365 |
-
|
366 |
-
if response.status_code == 200:
|
367 |
-
available_models = response.json()
|
368 |
-
if isinstance(available_models, dict) and "data" in available_models:
|
369 |
-
model_ids = [m["id"] for m in available_models["data"]]
|
370 |
-
return "✅ Available" if model_id in model_ids else "❓ Check Provider"
|
371 |
-
return "✅ Available"
|
372 |
-
else:
|
373 |
-
return "❓ Unknown"
|
374 |
-
|
375 |
-
# For traditional HF Inference API models
|
376 |
-
elif provider == "HF Inference":
|
377 |
-
url = f"https://api-inference.huggingface.co/models/{model_id}"
|
378 |
-
response = requests.get(url, headers=self.headers, timeout=5)
|
379 |
-
|
380 |
-
if response.status_code == 200:
|
381 |
-
return "✅ Available"
|
382 |
-
elif response.status_code == 503:
|
383 |
-
return "🔄 Loading"
|
384 |
-
else:
|
385 |
-
return "❌ Unavailable"
|
386 |
-
|
387 |
-
return "❓ Unknown"
|
388 |
-
|
389 |
-
except Exception:
|
390 |
-
return "❓ Connection Error"
|
391 |
-
|
392 |
-
def test_model_inference(self, model_id: str, input_text: str) -> Dict:
|
393 |
-
"""Test inference on a specific allowed model using current HF Inference Providers API"""
|
394 |
-
if model_id not in self.allowed_models:
|
395 |
return {
|
396 |
-
"
|
397 |
-
"error":
|
398 |
-
"response_time": None
|
399 |
}
|
400 |
|
401 |
-
model_info =
|
402 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
403 |
|
404 |
try:
|
405 |
-
|
|
|
|
|
|
|
|
|
|
|
406 |
|
407 |
-
if
|
408 |
-
|
409 |
-
result
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
416 |
else:
|
417 |
return {
|
418 |
-
"
|
419 |
-
"error": f"
|
420 |
-
"response_time": None
|
421 |
}
|
422 |
-
|
423 |
-
result["response_time"] = time.time() - start_time
|
424 |
-
return result
|
425 |
|
426 |
except Exception as e:
|
427 |
return {
|
428 |
-
"
|
429 |
-
"error": str(e)
|
430 |
-
"response_time": time.time() - start_time if 'start_time' in locals() else None
|
431 |
}
|
432 |
-
|
433 |
-
def _test_openai_compatible_model(self, model_id: str, input_text: str) -> Dict:
|
434 |
-
"""Test model using OpenAI-compatible chat completions API"""
|
435 |
-
url = "https://router.huggingface.co/v1/chat/completions"
|
436 |
-
|
437 |
-
payload = {
|
438 |
-
"model": model_id,
|
439 |
-
"messages": [
|
440 |
-
{"role": "user", "content": input_text}
|
441 |
-
],
|
442 |
-
"max_tokens": 100,
|
443 |
-
"temperature": 0.7
|
444 |
-
}
|
445 |
-
|
446 |
-
response = requests.post(url, headers=self.headers, json=payload, timeout=30)
|
447 |
-
|
448 |
-
if response.status_code == 200:
|
449 |
-
return {
|
450 |
-
"status": "success",
|
451 |
-
"result": response.json()
|
452 |
-
}
|
453 |
-
else:
|
454 |
-
return {
|
455 |
-
"status": "error",
|
456 |
-
"error": f"HTTP {response.status_code}: {response.text}"
|
457 |
-
}
|
458 |
-
|
459 |
-
def _test_hf_inference_model(self, model_id: str, input_text: str, model_info: Dict) -> Dict:
|
460 |
-
"""Test model using traditional HF Inference API"""
|
461 |
-
url = model_info["endpoint"]
|
462 |
-
|
463 |
-
# Adjust payload based on pipeline type
|
464 |
-
pipeline = model_info["pipeline"]
|
465 |
-
if pipeline in ["text-generation", "text2text-generation"]:
|
466 |
-
payload = {"inputs": input_text, "parameters": {"max_new_tokens": 100}}
|
467 |
-
elif pipeline == "text-to-image":
|
468 |
-
payload = {"inputs": input_text}
|
469 |
-
elif pipeline == "feature-extraction":
|
470 |
-
payload = {"inputs": input_text}
|
471 |
-
else:
|
472 |
-
payload = {"inputs": input_text}
|
473 |
-
|
474 |
-
response = requests.post(url, headers=self.headers, json=payload, timeout=30)
|
475 |
-
|
476 |
-
if response.status_code == 200:
|
477 |
-
return {
|
478 |
-
"status": "success",
|
479 |
-
"result": response.json()
|
480 |
-
}
|
481 |
-
else:
|
482 |
-
return {
|
483 |
-
"status": "error",
|
484 |
-
"error": f"HTTP {response.status_code}: {response.text}"
|
485 |
-
}
|
486 |
-
|
487 |
-
def _test_hf_router_model(self, model_id: str, input_text: str, model_info: Dict) -> Dict:
|
488 |
-
"""Test model using HF Router API for specialized tasks"""
|
489 |
-
pipeline = model_info["pipeline"]
|
490 |
-
|
491 |
-
if pipeline == "text-to-image":
|
492 |
-
# Use the text-to-image endpoint via HF Router
|
493 |
-
payload = {
|
494 |
-
"model": model_id,
|
495 |
-
"prompt": input_text,
|
496 |
-
"num_inference_steps": 20
|
497 |
-
}
|
498 |
-
# Note: This would need to be implemented based on actual HF Router text-to-image API
|
499 |
-
return {
|
500 |
-
"status": "info",
|
501 |
-
"result": "Text-to-image testing via HF Router not fully implemented in demo"
|
502 |
-
}
|
503 |
-
|
504 |
-
return {
|
505 |
-
"status": "error",
|
506 |
-
"error": f"HF Router testing not implemented for pipeline: {pipeline}"
|
507 |
-
}
|
508 |
|
509 |
-
def
|
510 |
try:
|
511 |
-
|
512 |
except ValueError as e:
|
513 |
-
# Create
|
514 |
-
with gr.Blocks(title="❌
|
515 |
gr.Markdown(f"""
|
516 |
-
# ❌
|
517 |
|
518 |
-
**
|
519 |
|
520 |
Please set the `HF_TOKEN` environment variable with your HuggingFace token.
|
521 |
|
522 |
-
|
523 |
""")
|
524 |
return demo
|
525 |
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
models = [m for m in models if m['provider'] == provider_filter]
|
532 |
-
|
533 |
-
if not models:
|
534 |
-
return "No models found for the selected provider"
|
535 |
-
|
536 |
-
df = pd.DataFrame(models)
|
537 |
-
return df
|
538 |
|
539 |
-
def
|
540 |
-
"""
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
551 |
|
552 |
-
def
|
553 |
-
"""
|
554 |
-
|
555 |
-
|
556 |
-
|
557 |
-
|
558 |
-
|
559 |
-
return
|
560 |
-
|
561 |
-
|
562 |
-
|
563 |
-
{
|
564 |
-
"""
|
565 |
-
|
566 |
-
if not test_input.strip():
|
567 |
-
test_input = "Hello, how are you today?"
|
568 |
-
|
569 |
-
result = explorer.test_model_inference(model_id, test_input)
|
570 |
-
|
571 |
-
model_info = explorer.allowed_models[model_id]
|
572 |
-
|
573 |
-
if result["status"] == "success":
|
574 |
-
return f"""
|
575 |
-
**Model:** {model_id}
|
576 |
-
**Provider:** {model_info['provider']}
|
577 |
-
**Pipeline:** {model_info['pipeline']}
|
578 |
-
**API Format:** {model_info['api_format']}
|
579 |
-
**Status:** ✅ Success
|
580 |
-
**Response Time:** {result['response_time']:.2f}s
|
581 |
-
|
582 |
-
**Result:**
|
583 |
-
```json
|
584 |
-
{json.dumps(result['result'], indent=2)}
|
585 |
-
```
|
586 |
-
"""
|
587 |
-
elif result["status"] == "info":
|
588 |
-
return f"""
|
589 |
-
**Model:** {model_id}
|
590 |
-
**Provider:** {model_info['provider']}
|
591 |
-
**Pipeline:** {model_info['pipeline']}
|
592 |
-
**Status:** ℹ️ Info
|
593 |
-
**Response Time:** {result['response_time']:.2f}s if result['response_time'] else 'N/A'
|
594 |
|
595 |
-
**
|
596 |
-
{
|
597 |
-
|
598 |
-
else:
|
599 |
-
return f"""
|
600 |
-
**Model:** {model_id}
|
601 |
-
**Provider:** {model_info['provider']}
|
602 |
-
**Pipeline:** {model_info['pipeline']}
|
603 |
-
**Status:** ❌ Error
|
604 |
-
**Response Time:** {result['response_time']:.2f}s if result['response_time'] else 'N/A'
|
605 |
|
606 |
-
|
607 |
-
{result['error']}
|
608 |
"""
|
609 |
|
610 |
-
|
611 |
-
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
|
618 |
-
|
619 |
-
|
620 |
-
|
621 |
-
|
622 |
-
|
623 |
-
|
624 |
-
|
625 |
-
|
|
|
|
|
626 |
|
627 |
-
return pd.DataFrame(status_info)
|
628 |
-
|
629 |
-
# Get unique providers and pipelines for filters
|
630 |
-
providers = ["All"] + list(set(model["provider"] for model in explorer.allowed_models.values()))
|
631 |
-
pipelines = ["All"] + list(set(model["pipeline"] for model in explorer.allowed_models.values()))
|
632 |
-
model_ids = list(explorer.allowed_models.keys())
|
633 |
-
|
634 |
-
# Create Gradio interface
|
635 |
-
with gr.Blocks(title="🤗 HuggingFace Inference Providers Explorer", theme=gr.themes.Soft()) as demo:
|
636 |
gr.Markdown("""
|
637 |
-
#
|
638 |
-
|
639 |
-
**Modern Inference Ecosystem**: Explore models from HuggingFace's unified inference providers platform!
|
640 |
|
641 |
-
|
642 |
-
- **HF Inference**: Native serverless inference API (free tier available)
|
643 |
-
- **Cerebras**: Ultra-fast LPU-powered inference
|
644 |
-
- **Groq**: Hardware-accelerated language processing
|
645 |
-
- **Together AI**: High-performance open-source models
|
646 |
-
- **Fireworks AI**: Production-ready model serving
|
647 |
-
- **Replicate**: Cloud-based model deployment
|
648 |
-
- **Cohere**: Enterprise NLP models
|
649 |
-
- **Fal AI**: Fast and reliable inference
|
650 |
|
651 |
-
|
|
|
|
|
|
|
|
|
652 |
|
653 |
-
---
|
654 |
""")
|
655 |
|
656 |
-
with gr.
|
657 |
-
#
|
658 |
-
with gr.
|
659 |
-
gr.Markdown("###
|
660 |
-
|
661 |
-
status_btn = gr.Button("📊 View Provider Details", variant="primary")
|
662 |
-
provider_status_output = gr.Dataframe(
|
663 |
-
headers=["Provider", "Description", "Capabilities", "Models", "Pricing", "Documentation"],
|
664 |
-
label="Provider Information"
|
665 |
-
)
|
666 |
-
|
667 |
-
status_btn.click(get_provider_status, outputs=provider_status_output)
|
668 |
-
|
669 |
-
# Models by Provider Tab
|
670 |
-
with gr.TabItem("🔍 Browse by Provider"):
|
671 |
-
gr.Markdown("### Models Available by Provider")
|
672 |
|
673 |
-
|
674 |
-
choices=
|
675 |
-
|
676 |
-
|
|
|
677 |
)
|
678 |
|
679 |
-
|
680 |
-
|
681 |
-
|
682 |
-
label="Models by Provider"
|
683 |
)
|
684 |
|
685 |
-
|
686 |
-
|
687 |
-
|
688 |
-
|
|
|
689 |
)
|
690 |
|
691 |
-
#
|
692 |
-
with gr.
|
693 |
-
gr.Markdown("###
|
694 |
-
|
695 |
-
pipeline_filter = gr.Dropdown(
|
696 |
-
choices=pipelines,
|
697 |
-
value="All",
|
698 |
-
label="Select Task/Pipeline"
|
699 |
-
)
|
700 |
|
701 |
-
|
702 |
-
|
703 |
-
|
704 |
-
|
|
|
|
|
705 |
)
|
706 |
|
707 |
-
pipeline_models_btn.click(
|
708 |
-
get_models_by_pipeline,
|
709 |
-
inputs=pipeline_filter,
|
710 |
-
outputs=pipeline_models_output
|
711 |
-
)
|
712 |
-
|
713 |
-
# Model Testing Tab
|
714 |
-
with gr.TabItem("🧪 Test Models"):
|
715 |
-
gr.Markdown("### Test Live Model Inference")
|
716 |
-
|
717 |
with gr.Row():
|
718 |
-
|
719 |
-
|
720 |
-
label="
|
721 |
-
|
|
|
722 |
)
|
723 |
-
|
724 |
-
placeholder="Hello, how are you today?",
|
725 |
-
label="Test Input",
|
726 |
-
info="Text to send to the model"
|
727 |
-
)
|
728 |
-
|
729 |
-
test_btn = gr.Button("🚀 Test Model", variant="primary")
|
730 |
-
test_output = gr.Markdown(label="Inference Results")
|
731 |
-
|
732 |
-
test_btn.click(
|
733 |
-
test_model,
|
734 |
-
inputs=[model_id_dropdown, test_input],
|
735 |
-
outputs=test_output
|
736 |
-
)
|
737 |
-
|
738 |
-
# All Models Tab
|
739 |
-
with gr.TabItem("📊 All Available Models"):
|
740 |
-
gr.Markdown("### Complete Model Catalog")
|
741 |
-
|
742 |
-
all_models_btn = gr.Button("📋 Load All Models", variant="primary")
|
743 |
-
all_models_output = gr.Dataframe(
|
744 |
-
headers=["Model ID", "Provider", "Pipeline", "Description", "API Format", "Status", "Pricing"],
|
745 |
-
label="Complete Model Catalog"
|
746 |
-
)
|
747 |
|
748 |
-
|
749 |
-
|
750 |
-
|
751 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
752 |
|
753 |
-
|
754 |
-
|
755 |
-
|
|
|
|
|
|
|
|
|
756 |
|
757 |
-
|
|
|
758 |
|
759 |
-
|
760 |
-
|
761 |
-
|
762 |
|
763 |
-
##
|
764 |
|
765 |
-
-
|
766 |
-
-
|
767 |
-
-
|
|
|
|
|
|
|
|
|
768 |
|
769 |
-
##
|
770 |
|
771 |
-
-
|
772 |
-
-
|
773 |
-
-
|
774 |
-
-
|
775 |
|
776 |
---
|
777 |
|
778 |
-
*Powered by HuggingFace Inference Providers
|
779 |
""")
|
780 |
|
781 |
return demo
|
782 |
|
783 |
if __name__ == "__main__":
|
784 |
try:
|
785 |
-
demo =
|
786 |
demo.launch(
|
787 |
server_name="0.0.0.0",
|
788 |
server_port=7860,
|
789 |
share=False
|
790 |
)
|
791 |
except Exception as e:
|
792 |
-
print(f"Error starting application: {e}")
|
793 |
print("Please ensure HF_TOKEN environment variable is set.")
|
|
|
1 |
import gradio as gr
|
2 |
import requests
|
3 |
import os
|
|
|
4 |
import json
|
5 |
from typing import List, Dict, Optional
|
6 |
import time
|
|
|
7 |
|
8 |
+
# Curated selection of advanced AI models for general users
|
9 |
+
ADVANCED_MODELS = {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
"meta-llama/Llama-3.3-70B-Instruct": {
|
11 |
"provider": "Cerebras",
|
12 |
+
"display_name": "Llama 3.3 70B (Ultra Fast)",
|
13 |
+
"description": "Meta's latest and most capable model, optimized for speed",
|
14 |
+
"category": "General Purpose",
|
15 |
+
"endpoint": "https://router.huggingface.co/v1/chat/completions"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
"deepseek-ai/DeepSeek-R1": {
|
18 |
+
"provider": "Groq",
|
19 |
+
"display_name": "DeepSeek R1 (Reasoning)",
|
20 |
+
"description": "Advanced reasoning model for complex problem solving",
|
21 |
+
"category": "Reasoning & Analysis",
|
22 |
+
"endpoint": "https://router.huggingface.co/v1/chat/completions"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
"meta-llama/Meta-Llama-3.1-405B-Instruct": {
|
25 |
"provider": "SambaNova",
|
26 |
+
"display_name": "Llama 3.1 405B (Most Powerful)",
|
27 |
+
"description": "Meta's largest and most capable language model",
|
28 |
+
"category": "Expert Level",
|
29 |
+
"endpoint": "https://router.huggingface.co/v1/chat/completions"
|
30 |
},
|
|
|
|
|
31 |
"meta-llama/Meta-Llama-3-70B-Instruct": {
|
32 |
"provider": "Together",
|
33 |
+
"display_name": "Llama 3 70B (Balanced)",
|
34 |
+
"description": "Excellent balance of capability and speed",
|
35 |
+
"category": "General Purpose",
|
36 |
+
"endpoint": "https://router.huggingface.co/v1/chat/completions"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
},
|
38 |
+
"cohere/command-r-plus": {
|
39 |
+
"provider": "Cohere",
|
40 |
+
"display_name": "Command R+ (Enterprise)",
|
41 |
+
"description": "Enterprise-grade model for professional use",
|
42 |
+
"category": "Business & Professional",
|
43 |
+
"endpoint": "https://router.huggingface.co/v1/chat/completions"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
},
|
45 |
+
"Qwen/Qwen2.5-72B-Instruct": {
|
46 |
+
"provider": "Novita",
|
47 |
+
"display_name": "Qwen 2.5 72B (Multilingual)",
|
48 |
+
"description": "Excellent for multiple languages and coding",
|
49 |
+
"category": "Multilingual & Code",
|
50 |
+
"endpoint": "https://router.huggingface.co/v1/chat/completions"
|
|
|
|
|
|
|
51 |
},
|
52 |
+
"mistralai/Mixtral-8x7B-Instruct-v0.1": {
|
53 |
+
"provider": "Nebius",
|
54 |
+
"display_name": "Mixtral 8x7B (Efficient)",
|
55 |
+
"description": "Fast and efficient for everyday tasks",
|
56 |
+
"category": "Daily Tasks",
|
57 |
+
"endpoint": "https://router.huggingface.co/v1/chat/completions"
|
|
|
|
|
|
|
58 |
}
|
59 |
}
|
60 |
|
61 |
+
class AIChat:
|
62 |
def __init__(self):
|
|
|
|
|
63 |
self.hf_token = os.getenv("HF_TOKEN")
|
|
|
64 |
if not self.hf_token:
|
65 |
+
raise ValueError("HF_TOKEN environment variable is required")
|
|
|
|
|
66 |
|
67 |
+
self.headers = {
|
68 |
+
"Authorization": f"Bearer {self.hf_token}",
|
69 |
+
"Content-Type": "application/json"
|
70 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
+
def send_message(self, model_id: str, message: str, conversation_history: List = None) -> Dict:
|
73 |
+
"""Send a chat message to the selected AI model"""
|
74 |
+
if model_id not in ADVANCED_MODELS:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
return {
|
76 |
+
"success": False,
|
77 |
+
"error": "Selected model is not available"
|
|
|
78 |
}
|
79 |
|
80 |
+
model_info = ADVANCED_MODELS[model_id]
|
81 |
+
|
82 |
+
# Build conversation with history
|
83 |
+
messages = []
|
84 |
+
if conversation_history:
|
85 |
+
messages.extend(conversation_history)
|
86 |
+
messages.append({"role": "user", "content": message})
|
87 |
+
|
88 |
+
payload = {
|
89 |
+
"model": model_id,
|
90 |
+
"messages": messages,
|
91 |
+
"max_tokens": 1000,
|
92 |
+
"temperature": 0.7,
|
93 |
+
"stream": False
|
94 |
+
}
|
95 |
|
96 |
try:
|
97 |
+
response = requests.post(
|
98 |
+
model_info["endpoint"],
|
99 |
+
headers=self.headers,
|
100 |
+
json=payload,
|
101 |
+
timeout=60
|
102 |
+
)
|
103 |
|
104 |
+
if response.status_code == 200:
|
105 |
+
result = response.json()
|
106 |
+
if "choices" in result and len(result["choices"]) > 0:
|
107 |
+
ai_response = result["choices"][0]["message"]["content"]
|
108 |
+
return {
|
109 |
+
"success": True,
|
110 |
+
"response": ai_response,
|
111 |
+
"model": model_info["display_name"],
|
112 |
+
"provider": model_info["provider"]
|
113 |
+
}
|
114 |
+
else:
|
115 |
+
return {
|
116 |
+
"success": False,
|
117 |
+
"error": "No response generated"
|
118 |
+
}
|
119 |
else:
|
120 |
return {
|
121 |
+
"success": False,
|
122 |
+
"error": f"API Error: {response.status_code} - {response.text}"
|
|
|
123 |
}
|
|
|
|
|
|
|
124 |
|
125 |
except Exception as e:
|
126 |
return {
|
127 |
+
"success": False,
|
128 |
+
"error": f"Connection error: {str(e)}"
|
|
|
129 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
+
def create_chat_interface():
|
132 |
try:
|
133 |
+
chat_ai = AIChat()
|
134 |
except ValueError as e:
|
135 |
+
# Create error interface
|
136 |
+
with gr.Blocks(title="❌ Setup Required") as demo:
|
137 |
gr.Markdown(f"""
|
138 |
+
# ❌ Setup Required
|
139 |
|
140 |
+
**{str(e)}**
|
141 |
|
142 |
Please set the `HF_TOKEN` environment variable with your HuggingFace token.
|
143 |
|
144 |
+
Get your token at: https://huggingface.co/settings/tokens
|
145 |
""")
|
146 |
return demo
|
147 |
|
148 |
+
# Create model choices for dropdown
|
149 |
+
model_choices = [
|
150 |
+
(f"🚀 {info['display_name']} - {info['description']}", model_id)
|
151 |
+
for model_id, info in ADVANCED_MODELS.items()
|
152 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
|
154 |
+
def chat_with_ai(message, history, selected_model):
|
155 |
+
"""Handle chat conversation"""
|
156 |
+
if not message.strip():
|
157 |
+
return history, ""
|
158 |
+
|
159 |
+
if not selected_model:
|
160 |
+
history.append([message, "❌ Please select an AI model first"])
|
161 |
+
return history, ""
|
162 |
+
|
163 |
+
# Show typing indicator
|
164 |
+
history.append([message, "🤔 Thinking..."])
|
165 |
+
yield history, ""
|
166 |
+
|
167 |
+
# Convert gradio history to API format
|
168 |
+
conversation_history = []
|
169 |
+
for i, (user_msg, ai_msg) in enumerate(history[:-1]): # Exclude the current "thinking" message
|
170 |
+
if user_msg and ai_msg and ai_msg != "🤔 Thinking...":
|
171 |
+
conversation_history.append({"role": "user", "content": user_msg})
|
172 |
+
conversation_history.append({"role": "assistant", "content": ai_msg})
|
173 |
+
|
174 |
+
# Send message to AI
|
175 |
+
result = chat_ai.send_message(selected_model, message, conversation_history)
|
176 |
+
|
177 |
+
if result["success"]:
|
178 |
+
# Update the last message with the real response
|
179 |
+
history[-1] = [message, result["response"]]
|
180 |
+
yield history, ""
|
181 |
+
else:
|
182 |
+
# Update with error message
|
183 |
+
history[-1] = [message, f"❌ Error: {result['error']}"]
|
184 |
+
yield history, ""
|
185 |
|
186 |
+
def clear_chat():
|
187 |
+
"""Clear the chat history"""
|
188 |
+
return [], ""
|
189 |
+
|
190 |
+
def get_model_info(selected_model):
|
191 |
+
"""Get information about the selected model"""
|
192 |
+
if not selected_model or selected_model not in ADVANCED_MODELS:
|
193 |
+
return "Select a model to see details"
|
194 |
+
|
195 |
+
info = ADVANCED_MODELS[selected_model]
|
196 |
+
return f"""
|
197 |
+
**🤖 {info['display_name']}**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
|
199 |
+
**Provider:** {info['provider']}
|
200 |
+
**Category:** {info['category']}
|
201 |
+
**Description:** {info['description']}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
|
203 |
+
Ready to chat! Type your message below.
|
|
|
204 |
"""
|
205 |
|
206 |
+
# Create the interface
|
207 |
+
with gr.Blocks(
|
208 |
+
title="🤖 Chat with Advanced AI Models",
|
209 |
+
theme=gr.themes.Soft(),
|
210 |
+
css="""
|
211 |
+
.chat-container {
|
212 |
+
max-width: 1000px;
|
213 |
+
margin: 0 auto;
|
214 |
+
}
|
215 |
+
.model-info {
|
216 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
217 |
+
color: white;
|
218 |
+
padding: 15px;
|
219 |
+
border-radius: 10px;
|
220 |
+
margin: 10px 0;
|
221 |
+
}
|
222 |
+
"""
|
223 |
+
) as demo:
|
224 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
gr.Markdown("""
|
226 |
+
# 🤖 Chat with Advanced AI Models
|
|
|
|
|
227 |
|
228 |
+
**Experience the latest AI technology!** Choose from powerful models and start chatting instantly.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
|
230 |
+
✨ **What you can do:**
|
231 |
+
- Ask questions and get intelligent answers
|
232 |
+
- Get help with writing, analysis, and creative tasks
|
233 |
+
- Solve problems and get explanations
|
234 |
+
- Have natural conversations
|
235 |
|
|
|
236 |
""")
|
237 |
|
238 |
+
with gr.Row():
|
239 |
+
# Left column - Model selection
|
240 |
+
with gr.Column(scale=1):
|
241 |
+
gr.Markdown("### 🎯 Choose Your AI")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
|
243 |
+
model_selector = gr.Dropdown(
|
244 |
+
choices=model_choices,
|
245 |
+
label="Select AI Model",
|
246 |
+
info="Each model has different strengths",
|
247 |
+
interactive=True
|
248 |
)
|
249 |
|
250 |
+
model_info_display = gr.Markdown(
|
251 |
+
"Select a model to see details",
|
252 |
+
elem_classes=["model-info"]
|
|
|
253 |
)
|
254 |
|
255 |
+
# Update model info when selection changes
|
256 |
+
model_selector.change(
|
257 |
+
get_model_info,
|
258 |
+
inputs=model_selector,
|
259 |
+
outputs=model_info_display
|
260 |
)
|
261 |
|
262 |
+
# Right column - Chat interface
|
263 |
+
with gr.Column(scale=2):
|
264 |
+
gr.Markdown("### 💬 Chat Interface")
|
|
|
|
|
|
|
|
|
|
|
|
|
265 |
|
266 |
+
chatbot = gr.Chatbot(
|
267 |
+
label="Conversation",
|
268 |
+
height=400,
|
269 |
+
show_label=False,
|
270 |
+
container=True,
|
271 |
+
elem_classes=["chat-container"]
|
272 |
)
|
273 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
274 |
with gr.Row():
|
275 |
+
message_input = gr.Textbox(
|
276 |
+
placeholder="Type your message here...",
|
277 |
+
label="Your Message",
|
278 |
+
scale=4,
|
279 |
+
lines=1
|
280 |
)
|
281 |
+
send_btn = gr.Button("Send 📤", variant="primary", scale=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
282 |
|
283 |
+
with gr.Row():
|
284 |
+
clear_btn = gr.Button("Clear Chat 🗑️", variant="secondary")
|
285 |
+
|
286 |
+
# Chat functionality
|
287 |
+
def submit_message(message, history, model):
|
288 |
+
return chat_with_ai(message, history, model)
|
289 |
+
|
290 |
+
# Send message on button click or enter
|
291 |
+
send_btn.click(
|
292 |
+
submit_message,
|
293 |
+
inputs=[message_input, chatbot, model_selector],
|
294 |
+
outputs=[chatbot, message_input]
|
295 |
+
).then(
|
296 |
+
lambda: "", outputs=message_input # Clear input after sending
|
297 |
+
)
|
298 |
|
299 |
+
message_input.submit(
|
300 |
+
submit_message,
|
301 |
+
inputs=[message_input, chatbot, model_selector],
|
302 |
+
outputs=[chatbot, message_input]
|
303 |
+
).then(
|
304 |
+
lambda: "", outputs=message_input # Clear input after sending
|
305 |
+
)
|
306 |
|
307 |
+
# Clear chat
|
308 |
+
clear_btn.click(clear_chat, outputs=[chatbot, message_input])
|
309 |
|
310 |
+
# Footer
|
311 |
+
gr.Markdown("""
|
312 |
+
---
|
313 |
|
314 |
+
## 🚀 **Featured AI Models:**
|
315 |
|
316 |
+
- **🚀 Ultra Fast**: Llama 3.3 70B on Cerebras chips
|
317 |
+
- **🧠 Reasoning**: DeepSeek R1 for complex problem solving
|
318 |
+
- **💪 Most Powerful**: Llama 3.1 405B for expert tasks
|
319 |
+
- **⚖️ Balanced**: Llama 3 70B for everyday use
|
320 |
+
- **💼 Enterprise**: Command R+ for professional work
|
321 |
+
- **🌍 Multilingual**: Qwen 2.5 72B for global communication
|
322 |
+
- **⚡ Efficient**: Mixtral 8x7B for quick responses
|
323 |
|
324 |
+
## 💡 **Tips for Better Conversations:**
|
325 |
|
326 |
+
- Be specific about what you want
|
327 |
+
- Ask follow-up questions for deeper insights
|
328 |
+
- Try different models for different types of tasks
|
329 |
+
- Use clear, natural language
|
330 |
|
331 |
---
|
332 |
|
333 |
+
*Powered by HuggingFace Inference Providers* 🤗
|
334 |
""")
|
335 |
|
336 |
return demo
|
337 |
|
338 |
if __name__ == "__main__":
|
339 |
try:
|
340 |
+
demo = create_chat_interface()
|
341 |
demo.launch(
|
342 |
server_name="0.0.0.0",
|
343 |
server_port=7860,
|
344 |
share=False
|
345 |
)
|
346 |
except Exception as e:
|
347 |
+
print(f"Error starting chat application: {e}")
|
348 |
print("Please ensure HF_TOKEN environment variable is set.")
|