Spaces:
Build error
Build error
import math | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
import commons | |
import modules | |
import attentions | |
import monotonic_align | |
from torch.nn import Conv1d, ConvTranspose1d, Conv2d | |
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm | |
from commons import init_weights, get_padding | |
from text import symbols, num_tones, num_languages | |
from vector_quantize_pytorch import VectorQuantize | |
class DurationDiscriminator(nn.Module): # vits2 | |
def __init__( | |
self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0 | |
): | |
super().__init__() | |
self.in_channels = in_channels | |
self.filter_channels = filter_channels | |
self.kernel_size = kernel_size | |
self.p_dropout = p_dropout | |
self.gin_channels = gin_channels | |
self.drop = nn.Dropout(p_dropout) | |
self.conv_1 = nn.Conv1d( | |
in_channels, filter_channels, kernel_size, padding=kernel_size // 2 | |
) | |
self.norm_1 = modules.LayerNorm(filter_channels) | |
self.conv_2 = nn.Conv1d( | |
filter_channels, filter_channels, kernel_size, padding=kernel_size // 2 | |
) | |
self.norm_2 = modules.LayerNorm(filter_channels) | |
self.dur_proj = nn.Conv1d(1, filter_channels, 1) | |
self.pre_out_conv_1 = nn.Conv1d( | |
2 * filter_channels, filter_channels, kernel_size, padding=kernel_size // 2 | |
) | |
self.pre_out_norm_1 = modules.LayerNorm(filter_channels) | |
self.pre_out_conv_2 = nn.Conv1d( | |
filter_channels, filter_channels, kernel_size, padding=kernel_size // 2 | |
) | |
self.pre_out_norm_2 = modules.LayerNorm(filter_channels) | |
if gin_channels != 0: | |
self.cond = nn.Conv1d(gin_channels, in_channels, 1) | |
self.output_layer = nn.Sequential(nn.Linear(filter_channels, 1), nn.Sigmoid()) | |
def forward_probability(self, x, x_mask, dur, g=None): | |
dur = self.dur_proj(dur) | |
x = torch.cat([x, dur], dim=1) | |
x = self.pre_out_conv_1(x * x_mask) | |
x = torch.relu(x) | |
x = self.pre_out_norm_1(x) | |
x = self.drop(x) | |
x = self.pre_out_conv_2(x * x_mask) | |
x = torch.relu(x) | |
x = self.pre_out_norm_2(x) | |
x = self.drop(x) | |
x = x * x_mask | |
x = x.transpose(1, 2) | |
output_prob = self.output_layer(x) | |
return output_prob | |
def forward(self, x, x_mask, dur_r, dur_hat, g=None): | |
x = torch.detach(x) | |
if g is not None: | |
g = torch.detach(g) | |
x = x + self.cond(g) | |
x = self.conv_1(x * x_mask) | |
x = torch.relu(x) | |
x = self.norm_1(x) | |
x = self.drop(x) | |
x = self.conv_2(x * x_mask) | |
x = torch.relu(x) | |
x = self.norm_2(x) | |
x = self.drop(x) | |
output_probs = [] | |
for dur in [dur_r, dur_hat]: | |
output_prob = self.forward_probability(x, x_mask, dur, g) | |
output_probs.append(output_prob) | |
return output_probs | |
class TransformerCouplingBlock(nn.Module): | |
def __init__( | |
self, | |
channels, | |
hidden_channels, | |
filter_channels, | |
n_heads, | |
n_layers, | |
kernel_size, | |
p_dropout, | |
n_flows=4, | |
gin_channels=0, | |
share_parameter=False, | |
): | |
super().__init__() | |
self.channels = channels | |
self.hidden_channels = hidden_channels | |
self.kernel_size = kernel_size | |
self.n_layers = n_layers | |
self.n_flows = n_flows | |
self.gin_channels = gin_channels | |
self.flows = nn.ModuleList() | |
self.wn = ( | |
attentions.FFT( | |
hidden_channels, | |
filter_channels, | |
n_heads, | |
n_layers, | |
kernel_size, | |
p_dropout, | |
isflow=True, | |
gin_channels=self.gin_channels, | |
) | |
if share_parameter | |
else None | |
) | |
for i in range(n_flows): | |
self.flows.append( | |
modules.TransformerCouplingLayer( | |
channels, | |
hidden_channels, | |
kernel_size, | |
n_layers, | |
n_heads, | |
p_dropout, | |
filter_channels, | |
mean_only=True, | |
wn_sharing_parameter=self.wn, | |
gin_channels=self.gin_channels, | |
) | |
) | |
self.flows.append(modules.Flip()) | |
def forward(self, x, x_mask, g=None, reverse=False): | |
if not reverse: | |
for flow in self.flows: | |
x, _ = flow(x, x_mask, g=g, reverse=reverse) | |
else: | |
for flow in reversed(self.flows): | |
x = flow(x, x_mask, g=g, reverse=reverse) | |
return x | |
class StochasticDurationPredictor(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
filter_channels, | |
kernel_size, | |
p_dropout, | |
n_flows=4, | |
gin_channels=0, | |
): | |
super().__init__() | |
filter_channels = in_channels # it needs to be removed from future version. | |
self.in_channels = in_channels | |
self.filter_channels = filter_channels | |
self.kernel_size = kernel_size | |
self.p_dropout = p_dropout | |
self.n_flows = n_flows | |
self.gin_channels = gin_channels | |
self.log_flow = modules.Log() | |
self.flows = nn.ModuleList() | |
self.flows.append(modules.ElementwiseAffine(2)) | |
for i in range(n_flows): | |
self.flows.append( | |
modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3) | |
) | |
self.flows.append(modules.Flip()) | |
self.post_pre = nn.Conv1d(1, filter_channels, 1) | |
self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1) | |
self.post_convs = modules.DDSConv( | |
filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout | |
) | |
self.post_flows = nn.ModuleList() | |
self.post_flows.append(modules.ElementwiseAffine(2)) | |
for i in range(4): | |
self.post_flows.append( | |
modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3) | |
) | |
self.post_flows.append(modules.Flip()) | |
self.pre = nn.Conv1d(in_channels, filter_channels, 1) | |
self.proj = nn.Conv1d(filter_channels, filter_channels, 1) | |
self.convs = modules.DDSConv( | |
filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout | |
) | |
if gin_channels != 0: | |
self.cond = nn.Conv1d(gin_channels, filter_channels, 1) | |
def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0): | |
x = torch.detach(x) | |
x = self.pre(x) | |
if g is not None: | |
g = torch.detach(g) | |
x = x + self.cond(g) | |
x = self.convs(x, x_mask) | |
x = self.proj(x) * x_mask | |
if not reverse: | |
flows = self.flows | |
assert w is not None | |
logdet_tot_q = 0 | |
h_w = self.post_pre(w) | |
h_w = self.post_convs(h_w, x_mask) | |
h_w = self.post_proj(h_w) * x_mask | |
e_q = ( | |
torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) | |
* x_mask | |
) | |
z_q = e_q | |
for flow in self.post_flows: | |
z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w)) | |
logdet_tot_q += logdet_q | |
z_u, z1 = torch.split(z_q, [1, 1], 1) | |
u = torch.sigmoid(z_u) * x_mask | |
z0 = (w - u) * x_mask | |
logdet_tot_q += torch.sum( | |
(F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2] | |
) | |
logq = ( | |
torch.sum(-0.5 * (math.log(2 * math.pi) + (e_q**2)) * x_mask, [1, 2]) | |
- logdet_tot_q | |
) | |
logdet_tot = 0 | |
z0, logdet = self.log_flow(z0, x_mask) | |
logdet_tot += logdet | |
z = torch.cat([z0, z1], 1) | |
for flow in flows: | |
z, logdet = flow(z, x_mask, g=x, reverse=reverse) | |
logdet_tot = logdet_tot + logdet | |
nll = ( | |
torch.sum(0.5 * (math.log(2 * math.pi) + (z**2)) * x_mask, [1, 2]) | |
- logdet_tot | |
) | |
return nll + logq # [b] | |
else: | |
flows = list(reversed(self.flows)) | |
flows = flows[:-2] + [flows[-1]] # remove a useless vflow | |
z = ( | |
torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) | |
* noise_scale | |
) | |
for flow in flows: | |
z = flow(z, x_mask, g=x, reverse=reverse) | |
z0, z1 = torch.split(z, [1, 1], 1) | |
logw = z0 | |
return logw | |
class DurationPredictor(nn.Module): | |
def __init__( | |
self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0 | |
): | |
super().__init__() | |
self.in_channels = in_channels | |
self.filter_channels = filter_channels | |
self.kernel_size = kernel_size | |
self.p_dropout = p_dropout | |
self.gin_channels = gin_channels | |
self.drop = nn.Dropout(p_dropout) | |
self.conv_1 = nn.Conv1d( | |
in_channels, filter_channels, kernel_size, padding=kernel_size // 2 | |
) | |
self.norm_1 = modules.LayerNorm(filter_channels) | |
self.conv_2 = nn.Conv1d( | |
filter_channels, filter_channels, kernel_size, padding=kernel_size // 2 | |
) | |
self.norm_2 = modules.LayerNorm(filter_channels) | |
self.proj = nn.Conv1d(filter_channels, 1, 1) | |
if gin_channels != 0: | |
self.cond = nn.Conv1d(gin_channels, in_channels, 1) | |
def forward(self, x, x_mask, g=None): | |
x = torch.detach(x) | |
if g is not None: | |
g = torch.detach(g) | |
x = x + self.cond(g) | |
x = self.conv_1(x * x_mask) | |
x = torch.relu(x) | |
x = self.norm_1(x) | |
x = self.drop(x) | |
x = self.conv_2(x * x_mask) | |
x = torch.relu(x) | |
x = self.norm_2(x) | |
x = self.drop(x) | |
x = self.proj(x * x_mask) | |
return x * x_mask | |
class Bottleneck(nn.Sequential): | |
def __init__(self, in_dim, hidden_dim): | |
c_fc1 = nn.Linear(in_dim, hidden_dim, bias=False) | |
c_fc2 = nn.Linear(in_dim, hidden_dim, bias=False) | |
super().__init__(*[c_fc1, c_fc2]) | |
class Block(nn.Module): | |
def __init__(self, in_dim, hidden_dim) -> None: | |
super().__init__() | |
self.norm = nn.LayerNorm(in_dim) | |
self.mlp = MLP(in_dim, hidden_dim) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = x + self.mlp(self.norm(x)) | |
return x | |
class MLP(nn.Module): | |
def __init__(self, in_dim, hidden_dim): | |
super().__init__() | |
self.c_fc1 = nn.Linear(in_dim, hidden_dim, bias=False) | |
self.c_fc2 = nn.Linear(in_dim, hidden_dim, bias=False) | |
self.c_proj = nn.Linear(hidden_dim, in_dim, bias=False) | |
def forward(self, x: torch.Tensor): | |
x = F.silu(self.c_fc1(x)) * self.c_fc2(x) | |
x = self.c_proj(x) | |
return x | |
class TextEncoder(nn.Module): | |
def __init__( | |
self, | |
n_vocab, | |
out_channels, | |
hidden_channels, | |
filter_channels, | |
n_heads, | |
n_layers, | |
kernel_size, | |
p_dropout, | |
n_speakers, | |
gin_channels=0, | |
): | |
super().__init__() | |
self.n_vocab = n_vocab | |
self.out_channels = out_channels | |
self.hidden_channels = hidden_channels | |
self.filter_channels = filter_channels | |
self.n_heads = n_heads | |
self.n_layers = n_layers | |
self.kernel_size = kernel_size | |
self.p_dropout = p_dropout | |
self.gin_channels = gin_channels | |
self.emb = nn.Embedding(len(symbols), hidden_channels) | |
nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5) | |
self.tone_emb = nn.Embedding(num_tones, hidden_channels) | |
nn.init.normal_(self.tone_emb.weight, 0.0, hidden_channels**-0.5) | |
self.language_emb = nn.Embedding(num_languages, hidden_channels) | |
nn.init.normal_(self.language_emb.weight, 0.0, hidden_channels**-0.5) | |
self.bert_proj = nn.Conv1d(1024, hidden_channels, 1) | |
self.ja_bert_proj = nn.Conv1d(1024, hidden_channels, 1) | |
self.en_bert_proj = nn.Conv1d(1024, hidden_channels, 1) | |
# self.emo_proj = nn.Linear(512, hidden_channels) | |
self.in_feature_net = nn.Sequential( | |
# input is assumed to an already normalized embedding | |
nn.Linear(512, 1028, bias=False), | |
nn.GELU(), | |
nn.LayerNorm(1028), | |
*[Block(1028, 512) for _ in range(1)], | |
nn.Linear(1028, 512, bias=False), | |
# normalize before passing to VQ? | |
# nn.GELU(), | |
# nn.LayerNorm(512), | |
) | |
self.emo_vq = VectorQuantize( | |
dim=512, | |
codebook_size=64, | |
codebook_dim=32, | |
commitment_weight=0.1, | |
decay=0.85, | |
heads=32, | |
kmeans_iters=20, | |
separate_codebook_per_head=True, | |
stochastic_sample_codes=True, | |
threshold_ema_dead_code=2, | |
) | |
self.out_feature_net = nn.Linear(512, hidden_channels) | |
self.encoder = attentions.Encoder( | |
hidden_channels, | |
filter_channels, | |
n_heads, | |
n_layers, | |
kernel_size, | |
p_dropout, | |
gin_channels=self.gin_channels, | |
) | |
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) | |
def forward( | |
self, x, x_lengths, tone, language, bert, ja_bert, en_bert, emo, sid, g=None | |
): | |
sid = sid.cpu() | |
bert_emb = self.bert_proj(bert).transpose(1, 2) | |
ja_bert_emb = self.ja_bert_proj(ja_bert).transpose(1, 2) | |
en_bert_emb = self.en_bert_proj(en_bert).transpose(1, 2) | |
emo_emb = self.in_feature_net(emo) | |
emo_emb, _, loss_commit = self.emo_vq(emo_emb.unsqueeze(1)) | |
loss_commit = loss_commit.mean() | |
emo_emb = self.out_feature_net(emo_emb) | |
# emo_emb = self.emo_proj(emo.unsqueeze(1)) | |
x = ( | |
self.emb(x) | |
+ self.tone_emb(tone) | |
+ self.language_emb(language) | |
+ bert_emb | |
+ ja_bert_emb | |
+ en_bert_emb | |
+ emo_emb | |
) * math.sqrt( | |
self.hidden_channels | |
) # [b, t, h] | |
x = torch.transpose(x, 1, -1) # [b, h, t] | |
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to( | |
x.dtype | |
) | |
x = self.encoder(x * x_mask, x_mask, g=g) | |
stats = self.proj(x) * x_mask | |
m, logs = torch.split(stats, self.out_channels, dim=1) | |
return x, m, logs, x_mask, loss_commit | |
class ResidualCouplingBlock(nn.Module): | |
def __init__( | |
self, | |
channels, | |
hidden_channels, | |
kernel_size, | |
dilation_rate, | |
n_layers, | |
n_flows=4, | |
gin_channels=0, | |
): | |
super().__init__() | |
self.channels = channels | |
self.hidden_channels = hidden_channels | |
self.kernel_size = kernel_size | |
self.dilation_rate = dilation_rate | |
self.n_layers = n_layers | |
self.n_flows = n_flows | |
self.gin_channels = gin_channels | |
self.flows = nn.ModuleList() | |
for i in range(n_flows): | |
self.flows.append( | |
modules.ResidualCouplingLayer( | |
channels, | |
hidden_channels, | |
kernel_size, | |
dilation_rate, | |
n_layers, | |
gin_channels=gin_channels, | |
mean_only=True, | |
) | |
) | |
self.flows.append(modules.Flip()) | |
def forward(self, x, x_mask, g=None, reverse=False): | |
if not reverse: | |
for flow in self.flows: | |
x, _ = flow(x, x_mask, g=g, reverse=reverse) | |
else: | |
for flow in reversed(self.flows): | |
x = flow(x, x_mask, g=g, reverse=reverse) | |
return x | |
class PosteriorEncoder(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
hidden_channels, | |
kernel_size, | |
dilation_rate, | |
n_layers, | |
gin_channels=0, | |
): | |
super().__init__() | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.hidden_channels = hidden_channels | |
self.kernel_size = kernel_size | |
self.dilation_rate = dilation_rate | |
self.n_layers = n_layers | |
self.gin_channels = gin_channels | |
self.pre = nn.Conv1d(in_channels, hidden_channels, 1) | |
self.enc = modules.WN( | |
hidden_channels, | |
kernel_size, | |
dilation_rate, | |
n_layers, | |
gin_channels=gin_channels, | |
) | |
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) | |
def forward(self, x, x_lengths, g=None): | |
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to( | |
x.dtype | |
) | |
x = self.pre(x) * x_mask | |
x = self.enc(x, x_mask, g=g) | |
stats = self.proj(x) * x_mask | |
m, logs = torch.split(stats, self.out_channels, dim=1) | |
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask | |
return z, m, logs, x_mask | |
class Generator(torch.nn.Module): | |
def __init__( | |
self, | |
initial_channel, | |
resblock, | |
resblock_kernel_sizes, | |
resblock_dilation_sizes, | |
upsample_rates, | |
upsample_initial_channel, | |
upsample_kernel_sizes, | |
gin_channels=0, | |
): | |
super(Generator, self).__init__() | |
self.num_kernels = len(resblock_kernel_sizes) | |
self.num_upsamples = len(upsample_rates) | |
self.conv_pre = Conv1d( | |
initial_channel, upsample_initial_channel, 7, 1, padding=3 | |
) | |
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2 | |
self.ups = nn.ModuleList() | |
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): | |
self.ups.append( | |
weight_norm( | |
ConvTranspose1d( | |
upsample_initial_channel // (2**i), | |
upsample_initial_channel // (2 ** (i + 1)), | |
k, | |
u, | |
padding=(k - u) // 2, | |
) | |
) | |
) | |
self.resblocks = nn.ModuleList() | |
for i in range(len(self.ups)): | |
ch = upsample_initial_channel // (2 ** (i + 1)) | |
for j, (k, d) in enumerate( | |
zip(resblock_kernel_sizes, resblock_dilation_sizes) | |
): | |
self.resblocks.append(resblock(ch, k, d)) | |
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False) | |
self.ups.apply(init_weights) | |
if gin_channels != 0: | |
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1) | |
def forward(self, x, g=None): | |
x = self.conv_pre(x) | |
if g is not None: | |
x = x + self.cond(g) | |
for i in range(self.num_upsamples): | |
x = F.leaky_relu(x, modules.LRELU_SLOPE) | |
x = self.ups[i](x) | |
xs = None | |
for j in range(self.num_kernels): | |
if xs is None: | |
xs = self.resblocks[i * self.num_kernels + j](x) | |
else: | |
xs += self.resblocks[i * self.num_kernels + j](x) | |
x = xs / self.num_kernels | |
x = F.leaky_relu(x) | |
x = self.conv_post(x) | |
x = torch.tanh(x) | |
return x | |
def remove_weight_norm(self): | |
print("Removing weight norm...") | |
for layer in self.ups: | |
remove_weight_norm(layer) | |
for layer in self.resblocks: | |
layer.remove_weight_norm() | |
class DiscriminatorP(torch.nn.Module): | |
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): | |
super(DiscriminatorP, self).__init__() | |
self.period = period | |
self.use_spectral_norm = use_spectral_norm | |
norm_f = weight_norm if use_spectral_norm is False else spectral_norm | |
self.convs = nn.ModuleList( | |
[ | |
norm_f( | |
Conv2d( | |
1, | |
32, | |
(kernel_size, 1), | |
(stride, 1), | |
padding=(get_padding(kernel_size, 1), 0), | |
) | |
), | |
norm_f( | |
Conv2d( | |
32, | |
128, | |
(kernel_size, 1), | |
(stride, 1), | |
padding=(get_padding(kernel_size, 1), 0), | |
) | |
), | |
norm_f( | |
Conv2d( | |
128, | |
512, | |
(kernel_size, 1), | |
(stride, 1), | |
padding=(get_padding(kernel_size, 1), 0), | |
) | |
), | |
norm_f( | |
Conv2d( | |
512, | |
1024, | |
(kernel_size, 1), | |
(stride, 1), | |
padding=(get_padding(kernel_size, 1), 0), | |
) | |
), | |
norm_f( | |
Conv2d( | |
1024, | |
1024, | |
(kernel_size, 1), | |
1, | |
padding=(get_padding(kernel_size, 1), 0), | |
) | |
), | |
] | |
) | |
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) | |
def forward(self, x): | |
fmap = [] | |
# 1d to 2d | |
b, c, t = x.shape | |
if t % self.period != 0: # pad first | |
n_pad = self.period - (t % self.period) | |
x = F.pad(x, (0, n_pad), "reflect") | |
t = t + n_pad | |
x = x.view(b, c, t // self.period, self.period) | |
for layer in self.convs: | |
x = layer(x) | |
x = F.leaky_relu(x, modules.LRELU_SLOPE) | |
fmap.append(x) | |
x = self.conv_post(x) | |
fmap.append(x) | |
x = torch.flatten(x, 1, -1) | |
return x, fmap | |
class DiscriminatorS(torch.nn.Module): | |
def __init__(self, use_spectral_norm=False): | |
super(DiscriminatorS, self).__init__() | |
norm_f = weight_norm if use_spectral_norm is False else spectral_norm | |
self.convs = nn.ModuleList( | |
[ | |
norm_f(Conv1d(1, 16, 15, 1, padding=7)), | |
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)), | |
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)), | |
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)), | |
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)), | |
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), | |
] | |
) | |
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) | |
def forward(self, x): | |
fmap = [] | |
for layer in self.convs: | |
x = layer(x) | |
x = F.leaky_relu(x, modules.LRELU_SLOPE) | |
fmap.append(x) | |
x = self.conv_post(x) | |
fmap.append(x) | |
x = torch.flatten(x, 1, -1) | |
return x, fmap | |
class MultiPeriodDiscriminator(torch.nn.Module): | |
def __init__(self, use_spectral_norm=False): | |
super(MultiPeriodDiscriminator, self).__init__() | |
periods = [2, 3, 5, 7, 11] | |
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)] | |
discs = discs + [ | |
DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods | |
] | |
self.discriminators = nn.ModuleList(discs) | |
def forward(self, y, y_hat): | |
y_d_rs = [] | |
y_d_gs = [] | |
fmap_rs = [] | |
fmap_gs = [] | |
for i, d in enumerate(self.discriminators): | |
y_d_r, fmap_r = d(y) | |
y_d_g, fmap_g = d(y_hat) | |
y_d_rs.append(y_d_r) | |
y_d_gs.append(y_d_g) | |
fmap_rs.append(fmap_r) | |
fmap_gs.append(fmap_g) | |
return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
class ReferenceEncoder(nn.Module): | |
""" | |
inputs --- [N, Ty/r, n_mels*r] mels | |
outputs --- [N, ref_enc_gru_size] | |
""" | |
def __init__(self, spec_channels, gin_channels=0): | |
super().__init__() | |
self.spec_channels = spec_channels | |
ref_enc_filters = [32, 32, 64, 64, 128, 128] | |
K = len(ref_enc_filters) | |
filters = [1] + ref_enc_filters | |
convs = [ | |
weight_norm( | |
nn.Conv2d( | |
in_channels=filters[i], | |
out_channels=filters[i + 1], | |
kernel_size=(3, 3), | |
stride=(2, 2), | |
padding=(1, 1), | |
) | |
) | |
for i in range(K) | |
] | |
self.convs = nn.ModuleList(convs) | |
# self.wns = nn.ModuleList([weight_norm(num_features=ref_enc_filters[i]) for i in range(K)]) # noqa: E501 | |
out_channels = self.calculate_channels(spec_channels, 3, 2, 1, K) | |
self.gru = nn.GRU( | |
input_size=ref_enc_filters[-1] * out_channels, | |
hidden_size=256 // 2, | |
batch_first=True, | |
) | |
self.proj = nn.Linear(128, gin_channels) | |
def forward(self, inputs, mask=None): | |
N = inputs.size(0) | |
out = inputs.view(N, 1, -1, self.spec_channels) # [N, 1, Ty, n_freqs] | |
for conv in self.convs: | |
out = conv(out) | |
# out = wn(out) | |
out = F.relu(out) # [N, 128, Ty//2^K, n_mels//2^K] | |
out = out.transpose(1, 2) # [N, Ty//2^K, 128, n_mels//2^K] | |
T = out.size(1) | |
N = out.size(0) | |
out = out.contiguous().view(N, T, -1) # [N, Ty//2^K, 128*n_mels//2^K] | |
self.gru.flatten_parameters() | |
memory, out = self.gru(out) # out --- [1, N, 128] | |
return self.proj(out.squeeze(0)) | |
def calculate_channels(self, L, kernel_size, stride, pad, n_convs): | |
for i in range(n_convs): | |
L = (L - kernel_size + 2 * pad) // stride + 1 | |
return L | |
class SynthesizerTrn(nn.Module): | |
""" | |
Synthesizer for Training | |
""" | |
def __init__( | |
self, | |
n_vocab, | |
spec_channels, | |
segment_size, | |
inter_channels, | |
hidden_channels, | |
filter_channels, | |
n_heads, | |
n_layers, | |
kernel_size, | |
p_dropout, | |
resblock, | |
resblock_kernel_sizes, | |
resblock_dilation_sizes, | |
upsample_rates, | |
upsample_initial_channel, | |
upsample_kernel_sizes, | |
n_speakers=256, | |
gin_channels=256, | |
use_sdp=True, | |
n_flow_layer=4, | |
n_layers_trans_flow=4, | |
flow_share_parameter=False, | |
use_transformer_flow=True, | |
**kwargs | |
): | |
super().__init__() | |
self.n_vocab = n_vocab | |
self.spec_channels = spec_channels | |
self.inter_channels = inter_channels | |
self.hidden_channels = hidden_channels | |
self.filter_channels = filter_channels | |
self.n_heads = n_heads | |
self.n_layers = n_layers | |
self.kernel_size = kernel_size | |
self.p_dropout = p_dropout | |
self.resblock = resblock | |
self.resblock_kernel_sizes = resblock_kernel_sizes | |
self.resblock_dilation_sizes = resblock_dilation_sizes | |
self.upsample_rates = upsample_rates | |
self.upsample_initial_channel = upsample_initial_channel | |
self.upsample_kernel_sizes = upsample_kernel_sizes | |
self.segment_size = segment_size | |
self.n_speakers = n_speakers | |
self.gin_channels = gin_channels | |
self.n_layers_trans_flow = n_layers_trans_flow | |
self.use_spk_conditioned_encoder = kwargs.get( | |
"use_spk_conditioned_encoder", True | |
) | |
self.use_sdp = use_sdp | |
self.use_noise_scaled_mas = kwargs.get("use_noise_scaled_mas", False) | |
self.mas_noise_scale_initial = kwargs.get("mas_noise_scale_initial", 0.01) | |
self.noise_scale_delta = kwargs.get("noise_scale_delta", 2e-6) | |
self.current_mas_noise_scale = self.mas_noise_scale_initial | |
if self.use_spk_conditioned_encoder and gin_channels > 0: | |
self.enc_gin_channels = gin_channels | |
self.enc_p = TextEncoder( | |
n_vocab, | |
inter_channels, | |
hidden_channels, | |
filter_channels, | |
n_heads, | |
n_layers, | |
kernel_size, | |
p_dropout, | |
self.n_speakers, | |
gin_channels=self.enc_gin_channels, | |
) | |
self.dec = Generator( | |
inter_channels, | |
resblock, | |
resblock_kernel_sizes, | |
resblock_dilation_sizes, | |
upsample_rates, | |
upsample_initial_channel, | |
upsample_kernel_sizes, | |
gin_channels=gin_channels, | |
) | |
self.enc_q = PosteriorEncoder( | |
spec_channels, | |
inter_channels, | |
hidden_channels, | |
5, | |
1, | |
16, | |
gin_channels=gin_channels, | |
) | |
if use_transformer_flow: | |
self.flow = TransformerCouplingBlock( | |
inter_channels, | |
hidden_channels, | |
filter_channels, | |
n_heads, | |
n_layers_trans_flow, | |
5, | |
p_dropout, | |
n_flow_layer, | |
gin_channels=gin_channels, | |
share_parameter=flow_share_parameter, | |
) | |
else: | |
self.flow = ResidualCouplingBlock( | |
inter_channels, | |
hidden_channels, | |
5, | |
1, | |
n_flow_layer, | |
gin_channels=gin_channels, | |
) | |
self.sdp = StochasticDurationPredictor( | |
hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels | |
) | |
self.dp = DurationPredictor( | |
hidden_channels, 256, 3, 0.5, gin_channels=gin_channels | |
) | |
if n_speakers >= 1: | |
self.emb_g = nn.Embedding(n_speakers, gin_channels) | |
else: | |
self.ref_enc = ReferenceEncoder(spec_channels, gin_channels) | |
def forward( | |
self, | |
x, | |
x_lengths, | |
y, | |
y_lengths, | |
sid, | |
tone, | |
language, | |
bert, | |
ja_bert, | |
en_bert, | |
emo=None, | |
): | |
if self.n_speakers > 0: | |
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1] | |
else: | |
g = self.ref_enc(y.transpose(1, 2)).unsqueeze(-1) | |
x, m_p, logs_p, x_mask, loss_commit = self.enc_p( | |
x, x_lengths, tone, language, bert, ja_bert, en_bert, emo, sid, g=g | |
) | |
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g) | |
z_p = self.flow(z, y_mask, g=g) | |
with torch.no_grad(): | |
# negative cross-entropy | |
s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t] | |
neg_cent1 = torch.sum( | |
-0.5 * math.log(2 * math.pi) - logs_p, [1], keepdim=True | |
) # [b, 1, t_s] | |
neg_cent2 = torch.matmul( | |
-0.5 * (z_p**2).transpose(1, 2), s_p_sq_r | |
) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s] | |
neg_cent3 = torch.matmul( | |
z_p.transpose(1, 2), (m_p * s_p_sq_r) | |
) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s] | |
neg_cent4 = torch.sum( | |
-0.5 * (m_p**2) * s_p_sq_r, [1], keepdim=True | |
) # [b, 1, t_s] | |
neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4 | |
if self.use_noise_scaled_mas: | |
epsilon = ( | |
torch.std(neg_cent) | |
* torch.randn_like(neg_cent) | |
* self.current_mas_noise_scale | |
) | |
neg_cent = neg_cent + epsilon | |
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1) | |
attn = ( | |
monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1)) | |
.unsqueeze(1) | |
.detach() | |
) | |
w = attn.sum(2) | |
l_length_sdp = self.sdp(x, x_mask, w, g=g) | |
l_length_sdp = l_length_sdp / torch.sum(x_mask) | |
logw_ = torch.log(w + 1e-6) * x_mask | |
logw = self.dp(x, x_mask, g=g) | |
l_length_dp = torch.sum((logw - logw_) ** 2, [1, 2]) / torch.sum( | |
x_mask | |
) # for averaging | |
l_length = l_length_dp + l_length_sdp | |
# expand prior | |
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) | |
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) | |
z_slice, ids_slice = commons.rand_slice_segments( | |
z, y_lengths, self.segment_size | |
) | |
o = self.dec(z_slice, g=g) | |
return ( | |
o, | |
l_length, | |
attn, | |
ids_slice, | |
x_mask, | |
y_mask, | |
(z, z_p, m_p, logs_p, m_q, logs_q), | |
(x, logw, logw_), | |
g, | |
loss_commit, | |
) | |
def infer( | |
self, | |
x, | |
x_lengths, | |
sid, | |
tone, | |
language, | |
bert, | |
ja_bert, | |
en_bert, | |
emo=None, | |
noise_scale=0.667, | |
length_scale=1, | |
noise_scale_w=0.8, | |
max_len=None, | |
sdp_ratio=0, | |
y=None, | |
): | |
# x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, tone, language, bert) | |
# g = self.gst(y) | |
if self.n_speakers > 0: | |
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1] | |
else: | |
g = self.ref_enc(y.transpose(1, 2)).unsqueeze(-1) | |
x, m_p, logs_p, x_mask, _ = self.enc_p( | |
x, x_lengths, tone, language, bert, ja_bert, en_bert, emo, sid, g=g | |
) | |
logw = self.sdp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w) * ( | |
sdp_ratio | |
) + self.dp(x, x_mask, g=g) * (1 - sdp_ratio) | |
w = torch.exp(logw) * x_mask * length_scale | |
w_ceil = torch.ceil(w) | |
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long() | |
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to( | |
x_mask.dtype | |
) | |
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1) | |
attn = commons.generate_path(w_ceil, attn_mask) | |
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose( | |
1, 2 | |
) # [b, t', t], [b, t, d] -> [b, d, t'] | |
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose( | |
1, 2 | |
) # [b, t', t], [b, t, d] -> [b, d, t'] | |
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale | |
z = self.flow(z_p, y_mask, g=g, reverse=True) | |
o = self.dec((z * y_mask)[:, :, :max_len], g=g) | |
return o, attn, y_mask, (z, z_p, m_p, logs_p) | |