first push
Browse files- app.py +26 -0
- requirements.txt +3 -0
app.py
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import requests
|
| 5 |
+
from io import BytesIO
|
| 6 |
+
|
| 7 |
+
url = "https://d2h50zujfkj84t.cloudfront.net/product_images/Screenshot_2024-09-03_135657.png"
|
| 8 |
+
response = requests.get(url)
|
| 9 |
+
image = Image.open(BytesIO(response.content))
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 13 |
+
"qresearch/llama-3.1-8B-vision-378",
|
| 14 |
+
trust_remote_code=True,
|
| 15 |
+
torch_dtype=torch.float16,
|
| 16 |
+
).to("cpu")
|
| 17 |
+
|
| 18 |
+
tokenizer = AutoTokenizer.from_pretrained("qresearch/llama-3.1-8B-vision-378", use_fast=True,)
|
| 19 |
+
|
| 20 |
+
print(
|
| 21 |
+
model.answer_question(
|
| 22 |
+
image, "Briefly describe the image", tokenizer, max_new_tokens=128, do_sample=True, temperature=0.3
|
| 23 |
+
),
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
transformers
|
| 3 |
+
pillow
|