Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -14,6 +14,7 @@ import mimetypes
|
|
| 14 |
from typing import List
|
| 15 |
|
| 16 |
from PyPDF2 import PdfReader
|
|
|
|
| 17 |
|
| 18 |
# Define model name clearly
|
| 19 |
MODEL_NAME = "unsloth/gemma-3-1b-pt"
|
|
@@ -39,7 +40,19 @@ class PodcastGenerator:
|
|
| 39 |
|
| 40 |
async def generate_script(self, prompt: str, language: str, api_key: str, file_obj=None, progress=None):
|
| 41 |
example = """
|
| 42 |
-
{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
"""
|
| 44 |
if language == "Auto Detect":
|
| 45 |
language_instruction = "- The podcast MUST be in the same language as the user input."
|
|
@@ -47,11 +60,18 @@ class PodcastGenerator:
|
|
| 47 |
language_instruction = f"- The podcast MUST be in {language} language"
|
| 48 |
|
| 49 |
system_prompt = f"""
|
| 50 |
-
You are a professional podcast generator
|
| 51 |
{language_instruction}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
Follow this example structure:
|
| 53 |
{example}
|
| 54 |
"""
|
|
|
|
| 55 |
if prompt and file_obj:
|
| 56 |
user_prompt = f"Please generate a podcast script based on the uploaded file following user input:\n{prompt}"
|
| 57 |
elif prompt:
|
|
@@ -59,10 +79,11 @@ Follow this example structure:
|
|
| 59 |
else:
|
| 60 |
user_prompt = "Please generate a podcast script based on the uploaded file."
|
| 61 |
|
|
|
|
| 62 |
if file_obj:
|
| 63 |
file_size = getattr(file_obj, 'size', os.path.getsize(file_obj.name))
|
| 64 |
if file_size > MAX_FILE_SIZE_BYTES:
|
| 65 |
-
raise Exception("File size exceeds limit.")
|
| 66 |
ext = os.path.splitext(file_obj.name)[1].lower()
|
| 67 |
if ext == '.pdf':
|
| 68 |
reader = PdfReader(file_obj)
|
|
@@ -73,54 +94,147 @@ Follow this example structure:
|
|
| 73 |
user_prompt += f"\n\n―― FILE CONTENT ――\n{text}"
|
| 74 |
|
| 75 |
prompt_text = system_prompt + "\n" + user_prompt
|
| 76 |
-
|
| 77 |
try:
|
| 78 |
-
if progress:
|
|
|
|
| 79 |
def hf_generate(p):
|
| 80 |
inputs = tokenizer(p, return_tensors="pt").to(model.device)
|
| 81 |
-
outs = model.generate(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
return tokenizer.decode(outs[0], skip_special_tokens=True)
|
| 83 |
-
generated_text = await asyncio.wait_for(
|
|
|
|
|
|
|
|
|
|
| 84 |
except asyncio.TimeoutError:
|
| 85 |
-
raise Exception("
|
| 86 |
except Exception as e:
|
| 87 |
-
raise Exception(f"Failed to generate script: {e}")
|
| 88 |
-
if progress: progress(0.4, "Script generated successfully!")
|
| 89 |
-
return json.loads(generated_text)
|
| 90 |
|
| 91 |
-
|
|
|
|
| 92 |
|
| 93 |
-
|
| 94 |
-
# Implementation unchanged
|
| 95 |
-
...
|
| 96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
# Gradio UI
|
| 98 |
with gr.Blocks(title="PodcastGen 🎙️") as demo:
|
| 99 |
gr.Markdown("""
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
)
|
| 104 |
with gr.Row():
|
| 105 |
with gr.Column():
|
| 106 |
-
input_text = gr.Textbox(...)
|
| 107 |
-
input_file = gr.File(
|
| 108 |
with gr.Column():
|
| 109 |
-
language = gr.Dropdown(
|
| 110 |
-
speaker1 = gr.Dropdown(
|
| 111 |
-
speaker2 = gr.Dropdown(
|
| 112 |
-
api_key = gr.Textbox(
|
| 113 |
-
|
| 114 |
generate_btn = gr.Button("Generate Podcast 🎙️", variant="primary")
|
| 115 |
-
output_audio = gr.Audio(
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
fn=process_input,
|
| 120 |
-
inputs=[input_text, input_file, language, speaker1, speaker2, api_key],
|
| 121 |
-
outputs=output_audio,
|
| 122 |
-
show_progress=True
|
| 123 |
-
)
|
| 124 |
-
|
| 125 |
-
demo.queue()
|
| 126 |
-
demo.launch(server_name="0.0.0.0", share=True, debug=True)
|
|
|
|
| 14 |
from typing import List
|
| 15 |
|
| 16 |
from PyPDF2 import PdfReader
|
| 17 |
+
from pydub import AudioSegment
|
| 18 |
|
| 19 |
# Define model name clearly
|
| 20 |
MODEL_NAME = "unsloth/gemma-3-1b-pt"
|
|
|
|
| 40 |
|
| 41 |
async def generate_script(self, prompt: str, language: str, api_key: str, file_obj=None, progress=None):
|
| 42 |
example = """
|
| 43 |
+
{
|
| 44 |
+
"topic": "AGI",
|
| 45 |
+
"podcast": [
|
| 46 |
+
{"speaker": 2, "line": "So, AGI, huh? Seems like everyone's talking about it these days."},
|
| 47 |
+
{"speaker": 1, "line": "Yeah, it's definitely having a moment, isn't it?"},
|
| 48 |
+
{"speaker": 2, "line": "It is and for good reason, right? I mean, you've been digging into this stuff, listening to the podcasts and everything. What really stood out to you? What got you hooked?"},
|
| 49 |
+
{"speaker": 1, "line": "It's easy to get lost in the noise, for sure."},
|
| 50 |
+
{"speaker": 2, "line": "Exactly. So how about we try to cut through some of that, shall we?"},
|
| 51 |
+
{"speaker": 1, "line": "Sounds like a plan."},
|
| 52 |
+
{"speaker": 2, "line": "It certainly is and on that note, we'll wrap up this deep dive. Thanks for listening, everyone."},
|
| 53 |
+
{"speaker": 1, "line": "Peace."}
|
| 54 |
+
]
|
| 55 |
+
}
|
| 56 |
"""
|
| 57 |
if language == "Auto Detect":
|
| 58 |
language_instruction = "- The podcast MUST be in the same language as the user input."
|
|
|
|
| 60 |
language_instruction = f"- The podcast MUST be in {language} language"
|
| 61 |
|
| 62 |
system_prompt = f"""
|
| 63 |
+
You are a professional podcast generator. Your task is to generate a professional podcast script based on the user input.
|
| 64 |
{language_instruction}
|
| 65 |
+
- The podcast should have 2 speakers.
|
| 66 |
+
- The podcast should be long.
|
| 67 |
+
- Do not use names for the speakers.
|
| 68 |
+
- The podcast should be interesting, lively, and engaging, and hook the listener from the start.
|
| 69 |
+
- The input text might be disorganized or unformatted, originating from sources like PDFs or text files. Ignore any formatting inconsistencies or irrelevant details; your task is to distill the essential points, identify key definitions, and highlight intriguing facts that would be suitable for discussion in a podcast.
|
| 70 |
+
- The script must be in JSON format.
|
| 71 |
Follow this example structure:
|
| 72 |
{example}
|
| 73 |
"""
|
| 74 |
+
# Build the user prompt
|
| 75 |
if prompt and file_obj:
|
| 76 |
user_prompt = f"Please generate a podcast script based on the uploaded file following user input:\n{prompt}"
|
| 77 |
elif prompt:
|
|
|
|
| 79 |
else:
|
| 80 |
user_prompt = "Please generate a podcast script based on the uploaded file."
|
| 81 |
|
| 82 |
+
# Handle file content
|
| 83 |
if file_obj:
|
| 84 |
file_size = getattr(file_obj, 'size', os.path.getsize(file_obj.name))
|
| 85 |
if file_size > MAX_FILE_SIZE_BYTES:
|
| 86 |
+
raise Exception(f"File size exceeds the {MAX_FILE_SIZE_MB}MB limit. Please upload a smaller file.")
|
| 87 |
ext = os.path.splitext(file_obj.name)[1].lower()
|
| 88 |
if ext == '.pdf':
|
| 89 |
reader = PdfReader(file_obj)
|
|
|
|
| 94 |
user_prompt += f"\n\n―― FILE CONTENT ――\n{text}"
|
| 95 |
|
| 96 |
prompt_text = system_prompt + "\n" + user_prompt
|
|
|
|
| 97 |
try:
|
| 98 |
+
if progress:
|
| 99 |
+
progress(0.3, "Generating podcast script...")
|
| 100 |
def hf_generate(p):
|
| 101 |
inputs = tokenizer(p, return_tensors="pt").to(model.device)
|
| 102 |
+
outs = model.generate(
|
| 103 |
+
**inputs,
|
| 104 |
+
max_new_tokens=1024,
|
| 105 |
+
do_sample=True,
|
| 106 |
+
temperature=1.0
|
| 107 |
+
)
|
| 108 |
return tokenizer.decode(outs[0], skip_special_tokens=True)
|
| 109 |
+
generated_text = await asyncio.wait_for(
|
| 110 |
+
asyncio.to_thread(hf_generate, prompt_text),
|
| 111 |
+
timeout=60
|
| 112 |
+
)
|
| 113 |
except asyncio.TimeoutError:
|
| 114 |
+
raise Exception("The script generation request timed out. Please try again later.")
|
| 115 |
except Exception as e:
|
| 116 |
+
raise Exception(f"Failed to generate podcast script: {e}")
|
|
|
|
|
|
|
| 117 |
|
| 118 |
+
if progress:
|
| 119 |
+
progress(0.4, "Script generated successfully!")
|
| 120 |
|
| 121 |
+
return json.loads(generated_text)
|
|
|
|
|
|
|
| 122 |
|
| 123 |
+
async def tts_generate(self, text: str, speaker: int, speaker1: str, speaker2: str) -> str:
|
| 124 |
+
voice = speaker1 if speaker == 1 else speaker2
|
| 125 |
+
speech = edge_tts.Communicate(text, voice)
|
| 126 |
+
temp_filename = f"temp_{uuid.uuid4()}.wav"
|
| 127 |
+
try:
|
| 128 |
+
await asyncio.wait_for(speech.save(temp_filename), timeout=30)
|
| 129 |
+
return temp_filename
|
| 130 |
+
except asyncio.TimeoutError:
|
| 131 |
+
if os.path.exists(temp_filename): os.remove(temp_filename)
|
| 132 |
+
raise Exception("Text-to-speech generation timed out. Please try with a shorter text.")
|
| 133 |
+
except Exception as e:
|
| 134 |
+
if os.path.exists(temp_filename): os.remove(temp_filename)
|
| 135 |
+
raise e
|
| 136 |
+
|
| 137 |
+
async def combine_audio_files(self, audio_files: List[str], progress=None) -> str:
|
| 138 |
+
if progress: progress(0.9, "Combining audio files...")
|
| 139 |
+
combined_audio = AudioSegment.empty()
|
| 140 |
+
for audio_file in audio_files:
|
| 141 |
+
combined_audio += AudioSegment.from_file(audio_file)
|
| 142 |
+
os.remove(audio_file)
|
| 143 |
+
output_filename = f"output_{uuid.uuid4()}.wav"
|
| 144 |
+
combined_audio.export(output_filename, format="wav")
|
| 145 |
+
if progress: progress(1.0, "Podcast generated successfully!")
|
| 146 |
+
return output_filename
|
| 147 |
+
|
| 148 |
+
async def generate_podcast(self, input_text: str, language: str, speaker1: str, speaker2: str, api_key: str, file_obj=None, progress=None) -> str:
|
| 149 |
+
try:
|
| 150 |
+
if progress: progress(0.1, "Starting podcast generation...")
|
| 151 |
+
return await asyncio.wait_for(
|
| 152 |
+
self._generate_podcast_internal(input_text, language, speaker1, speaker2, api_key, file_obj, progress),
|
| 153 |
+
timeout=600
|
| 154 |
+
)
|
| 155 |
+
except asyncio.TimeoutError:
|
| 156 |
+
raise Exception("The podcast generation process timed out. Please try with shorter text or try again later.")
|
| 157 |
+
except Exception as e:
|
| 158 |
+
raise Exception(f"Error generating podcast: {str(e)}")
|
| 159 |
+
|
| 160 |
+
async def _generate_podcast_internal(self, input_text: str, language: str, speaker1: str, speaker2: str, api_key: str, file_obj=None, progress=None) -> str:
|
| 161 |
+
if progress: progress(0.2, "Generating podcast script...")
|
| 162 |
+
podcast_json = await self.generate_script(input_text, language, api_key, file_obj, progress)
|
| 163 |
+
if progress: progress(0.5, "Converting text to speech...")
|
| 164 |
+
audio_files = []
|
| 165 |
+
total_lines = len(podcast_json['podcast'])
|
| 166 |
+
batch_size = 10
|
| 167 |
+
for batch_start in range(0, total_lines, batch_size):
|
| 168 |
+
batch_end = min(batch_start + batch_size, total_lines)
|
| 169 |
+
batch = podcast_json['podcast'][batch_start:batch_end]
|
| 170 |
+
tts_tasks = [self.tts_generate(item['line'], item['speaker'], speaker1, speaker2) for item in batch]
|
| 171 |
+
try:
|
| 172 |
+
batch_results = await asyncio.gather(*tts_tasks, return_exceptions=True)
|
| 173 |
+
for result in batch_results:
|
| 174 |
+
if isinstance(result, Exception):
|
| 175 |
+
for file in audio_files:
|
| 176 |
+
if os.path.exists(file): os.remove(file)
|
| 177 |
+
raise Exception(f"Error generating speech: {str(result)}")
|
| 178 |
+
audio_files.append(result)
|
| 179 |
+
if progress:
|
| 180 |
+
progress(0.5 + (0.4 * (batch_end / total_lines)), f"Processed {batch_end}/{total_lines} speech segments...")
|
| 181 |
+
except Exception as e:
|
| 182 |
+
for file in audio_files:
|
| 183 |
+
if os.path.exists(file): os.remove(file)
|
| 184 |
+
raise Exception(f"Error in batch TTS generation: {str(e)}")
|
| 185 |
+
combined = await self.combine_audio_files(audio_files, progress)
|
| 186 |
+
return combined
|
| 187 |
+
|
| 188 |
+
async def process_input(input_text: str, input_file, language: str, speaker1: str, speaker2: str, api_key: str = "", progress=None) -> str:
|
| 189 |
+
start_time = time.time()
|
| 190 |
+
voice_names = {
|
| 191 |
+
"Andrew - English (United States)": "en-US-AndrewMultilingualNeural",
|
| 192 |
+
"Ava - English (United States)": "en-US-AvaMultilingualNeural",
|
| 193 |
+
"Brian - English (United States)": "en-US-BrianMultilingualNeural",
|
| 194 |
+
"Emma - English (United States)": "en-US-EmmaMultilingualNeural",
|
| 195 |
+
"Florian - German (Germany)": "de-DE-FlorianMultilingualNeural",
|
| 196 |
+
"Seraphina - German (Germany)": "de-DE-SeraphinaMultilingualNeural",
|
| 197 |
+
"Remy - French (France)": "fr-FR-RemyMultilingualNeural",
|
| 198 |
+
"Vivienne - French (France)": "fr-FR-VivienneMultilingualNeural"
|
| 199 |
+
}
|
| 200 |
+
speaker1 = voice_names[speaker1]
|
| 201 |
+
speaker2 = voice_names[speaker2]
|
| 202 |
+
try:
|
| 203 |
+
if progress: progress(0.05, "Processing input...")
|
| 204 |
+
if not api_key:
|
| 205 |
+
api_key = "saf"
|
| 206 |
+
if not api_key:
|
| 207 |
+
raise Exception("No API key provided. Please provide a Gemini API key.")
|
| 208 |
+
generator = PodcastGenerator()
|
| 209 |
+
output = await generator.generate_podcast(input_text, lan
|
| 210 |
+
guage, speaker1, speaker2, api_key, input_file, progress)
|
| 211 |
+
print(f"Total podcast generation time: {time.time() - start_time:.2f} seconds")
|
| 212 |
+
return output
|
| 213 |
+
except Exception as e:
|
| 214 |
+
msg = str(e)
|
| 215 |
+
if "rate limit" in msg.lower():
|
| 216 |
+
raise Exception("Rate limit exceeded. Please try again later or use your own API key.")
|
| 217 |
+
elif "timeout" in msg.lower():
|
| 218 |
+
raise Exception("The request timed out... Please try with shorter text.")
|
| 219 |
+
else:
|
| 220 |
+
raise Exception(f"Error: {msg}")
|
| 221 |
# Gradio UI
|
| 222 |
with gr.Blocks(title="PodcastGen 🎙️") as demo:
|
| 223 |
gr.Markdown("""
|
| 224 |
+
# PodcastGen 🎙️
|
| 225 |
+
Generate a 2-speaker podcast from text or PDF!
|
| 226 |
+
""" )
|
|
|
|
| 227 |
with gr.Row():
|
| 228 |
with gr.Column():
|
| 229 |
+
input_text = gr.Textbox(label="Input Text", lines=10, placeholder="Enter podcast topic or paste text here...", elem_id="input_text")
|
| 230 |
+
input_file = gr.File(label="Or Upload a PDF or TXT file", file_types=[".pdf", ".txt"] )
|
| 231 |
with gr.Column():
|
| 232 |
+
language = gr.Dropdown(label="Podcast Language", choices=["Auto Detect","English","German","French","Spanish","Italian","Dutch","Portuguese","Russian","Chinese","Japanese","Korean","Other" ], value="Auto Detect")
|
| 233 |
+
speaker1 = gr.Dropdown(label="Speaker 1 Voice", choices=["Andrew - English (United States)","Ava - English (United States)","Brian - English (United States)","Emma - English (United States)","Florian - German (Germany)","Seraphina - German (Germany)","Remy - French (France)","Vivienne - French (France)" ], value="Andrew - English (United States)")
|
| 234 |
+
speaker2 = gr.Dropdown(label="Speaker 2 Voice", choices=["Andrew - English (United States)","Ava - English (United States)","Brian - English (United States)","Emma - English (United States)","Florian - German (Germany)","Seraphina - German (Germany)","Remy - French (France)","Vivienne - French (France)" ], value="Ava - English (United States)")
|
| 235 |
+
api_key = gr.Textbox(label="Gemini API Key (Optional)", type="password", placeholder="Needed only if you're getting rate limited.")
|
|
|
|
| 236 |
generate_btn = gr.Button("Generate Podcast 🎙️", variant="primary")
|
| 237 |
+
output_audio = gr.Audio(label="Generated Podcast", type="filepath", format="wav", elem_id="output_audio")
|
| 238 |
+
generate_btn.click(fn=process_input, inputs=[input_text, input_file, language, speaker1, speaker2, api_key], outputs=output_audio, show_progress=True)
|
| 239 |
+
demo.queue()
|
| 240 |
+
demo.launch(server_name="0.0.0.0", share=True, debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|