Spaces:
Runtime error
Runtime error
Merge pull request #6 from JeffreyRathgeber/milestone-3
Browse files- README.md +3 -0
- TrainedModels/README.txt +1 -0
- TrainedModels/tokenizer/special_tokens_map.json +7 -0
- TrainedModels/tokenizer/tokenizer.json +0 -0
- TrainedModels/tokenizer/tokenizer_config.json +13 -0
- TrainedModels/tokenizer/vocab.txt +0 -0
- TrainingAlgo.ipynb +2406 -0
- aiprojecttest.py +0 -215
- app.py +0 -1
README.md
CHANGED
@@ -12,6 +12,9 @@ pinned: false
|
|
12 |
# CSUY4613-Assignments
|
13 |
JEFFREY RATHGEBER jr5349
|
14 |
|
|
|
|
|
|
|
15 |
PROJECT MILESTONE 2 README link
|
16 |
https://huggingface.co/spaces/Rathgeberj/CS-UY4613Project
|
17 |
|
|
|
12 |
# CSUY4613-Assignments
|
13 |
JEFFREY RATHGEBER jr5349
|
14 |
|
15 |
+
PROJECT MILESTONE 3 README LINK
|
16 |
+
https://huggingface.co/spaces/Rathgeberj/CS-UY4613Project
|
17 |
+
|
18 |
PROJECT MILESTONE 2 README link
|
19 |
https://huggingface.co/spaces/Rathgeberj/CS-UY4613Project
|
20 |
|
TrainedModels/README.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
ACTUAL MODELS TOO LARGE TO UPLOAD TO GITHUB, SEE ON HUGGINGFACE SPACE MODELS
|
TrainedModels/tokenizer/special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
TrainedModels/tokenizer/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
TrainedModels/tokenizer/tokenizer_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"clean_up_tokenization_spaces": true,
|
3 |
+
"cls_token": "[CLS]",
|
4 |
+
"do_lower_case": true,
|
5 |
+
"mask_token": "[MASK]",
|
6 |
+
"model_max_length": 512,
|
7 |
+
"pad_token": "[PAD]",
|
8 |
+
"sep_token": "[SEP]",
|
9 |
+
"strip_accents": null,
|
10 |
+
"tokenize_chinese_chars": true,
|
11 |
+
"tokenizer_class": "DistilBertTokenizer",
|
12 |
+
"unk_token": "[UNK]"
|
13 |
+
}
|
TrainedModels/tokenizer/vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
TrainingAlgo.ipynb
ADDED
@@ -0,0 +1,2406 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": []
|
7 |
+
},
|
8 |
+
"kernelspec": {
|
9 |
+
"name": "python3",
|
10 |
+
"display_name": "Python 3"
|
11 |
+
},
|
12 |
+
"language_info": {
|
13 |
+
"name": "python"
|
14 |
+
},
|
15 |
+
"widgets": {
|
16 |
+
"application/vnd.jupyter.widget-state+json": {
|
17 |
+
"9972abac7caf4cc6b0d98071fd7b2e05": {
|
18 |
+
"model_module": "@jupyter-widgets/controls",
|
19 |
+
"model_name": "HBoxModel",
|
20 |
+
"model_module_version": "1.5.0",
|
21 |
+
"state": {
|
22 |
+
"_dom_classes": [],
|
23 |
+
"_model_module": "@jupyter-widgets/controls",
|
24 |
+
"_model_module_version": "1.5.0",
|
25 |
+
"_model_name": "HBoxModel",
|
26 |
+
"_view_count": null,
|
27 |
+
"_view_module": "@jupyter-widgets/controls",
|
28 |
+
"_view_module_version": "1.5.0",
|
29 |
+
"_view_name": "HBoxView",
|
30 |
+
"box_style": "",
|
31 |
+
"children": [
|
32 |
+
"IPY_MODEL_b53fb6f416d8458bb0875cbace688913",
|
33 |
+
"IPY_MODEL_a25b06ec34a44529bd5bd686a9a381e5",
|
34 |
+
"IPY_MODEL_52da3fef70074ddf95a3b257dcf4b100"
|
35 |
+
],
|
36 |
+
"layout": "IPY_MODEL_932e4324d43346e48c85af3e5d5b45c1"
|
37 |
+
}
|
38 |
+
},
|
39 |
+
"b53fb6f416d8458bb0875cbace688913": {
|
40 |
+
"model_module": "@jupyter-widgets/controls",
|
41 |
+
"model_name": "HTMLModel",
|
42 |
+
"model_module_version": "1.5.0",
|
43 |
+
"state": {
|
44 |
+
"_dom_classes": [],
|
45 |
+
"_model_module": "@jupyter-widgets/controls",
|
46 |
+
"_model_module_version": "1.5.0",
|
47 |
+
"_model_name": "HTMLModel",
|
48 |
+
"_view_count": null,
|
49 |
+
"_view_module": "@jupyter-widgets/controls",
|
50 |
+
"_view_module_version": "1.5.0",
|
51 |
+
"_view_name": "HTMLView",
|
52 |
+
"description": "",
|
53 |
+
"description_tooltip": null,
|
54 |
+
"layout": "IPY_MODEL_13d5e786f6294da2b6e5d90ca06c8593",
|
55 |
+
"placeholder": "",
|
56 |
+
"style": "IPY_MODEL_bbfa5943bc1c41dbaf3a2ef89ac8d0b3",
|
57 |
+
"value": "Downloading (…)okenizer_config.json: 100%"
|
58 |
+
}
|
59 |
+
},
|
60 |
+
"a25b06ec34a44529bd5bd686a9a381e5": {
|
61 |
+
"model_module": "@jupyter-widgets/controls",
|
62 |
+
"model_name": "FloatProgressModel",
|
63 |
+
"model_module_version": "1.5.0",
|
64 |
+
"state": {
|
65 |
+
"_dom_classes": [],
|
66 |
+
"_model_module": "@jupyter-widgets/controls",
|
67 |
+
"_model_module_version": "1.5.0",
|
68 |
+
"_model_name": "FloatProgressModel",
|
69 |
+
"_view_count": null,
|
70 |
+
"_view_module": "@jupyter-widgets/controls",
|
71 |
+
"_view_module_version": "1.5.0",
|
72 |
+
"_view_name": "ProgressView",
|
73 |
+
"bar_style": "success",
|
74 |
+
"description": "",
|
75 |
+
"description_tooltip": null,
|
76 |
+
"layout": "IPY_MODEL_3ce089610ec446c19db3bae1baa45d7a",
|
77 |
+
"max": 28,
|
78 |
+
"min": 0,
|
79 |
+
"orientation": "horizontal",
|
80 |
+
"style": "IPY_MODEL_bcf06ca3212c43e0a5db7e7d4ea01375",
|
81 |
+
"value": 28
|
82 |
+
}
|
83 |
+
},
|
84 |
+
"52da3fef70074ddf95a3b257dcf4b100": {
|
85 |
+
"model_module": "@jupyter-widgets/controls",
|
86 |
+
"model_name": "HTMLModel",
|
87 |
+
"model_module_version": "1.5.0",
|
88 |
+
"state": {
|
89 |
+
"_dom_classes": [],
|
90 |
+
"_model_module": "@jupyter-widgets/controls",
|
91 |
+
"_model_module_version": "1.5.0",
|
92 |
+
"_model_name": "HTMLModel",
|
93 |
+
"_view_count": null,
|
94 |
+
"_view_module": "@jupyter-widgets/controls",
|
95 |
+
"_view_module_version": "1.5.0",
|
96 |
+
"_view_name": "HTMLView",
|
97 |
+
"description": "",
|
98 |
+
"description_tooltip": null,
|
99 |
+
"layout": "IPY_MODEL_aab6a478cec84b25a29bc0ed4ee2aaac",
|
100 |
+
"placeholder": "",
|
101 |
+
"style": "IPY_MODEL_3e6f987e297b4a2b8f3eb1b12b4b67af",
|
102 |
+
"value": " 28.0/28.0 [00:00<00:00, 1.28kB/s]"
|
103 |
+
}
|
104 |
+
},
|
105 |
+
"932e4324d43346e48c85af3e5d5b45c1": {
|
106 |
+
"model_module": "@jupyter-widgets/base",
|
107 |
+
"model_name": "LayoutModel",
|
108 |
+
"model_module_version": "1.2.0",
|
109 |
+
"state": {
|
110 |
+
"_model_module": "@jupyter-widgets/base",
|
111 |
+
"_model_module_version": "1.2.0",
|
112 |
+
"_model_name": "LayoutModel",
|
113 |
+
"_view_count": null,
|
114 |
+
"_view_module": "@jupyter-widgets/base",
|
115 |
+
"_view_module_version": "1.2.0",
|
116 |
+
"_view_name": "LayoutView",
|
117 |
+
"align_content": null,
|
118 |
+
"align_items": null,
|
119 |
+
"align_self": null,
|
120 |
+
"border": null,
|
121 |
+
"bottom": null,
|
122 |
+
"display": null,
|
123 |
+
"flex": null,
|
124 |
+
"flex_flow": null,
|
125 |
+
"grid_area": null,
|
126 |
+
"grid_auto_columns": null,
|
127 |
+
"grid_auto_flow": null,
|
128 |
+
"grid_auto_rows": null,
|
129 |
+
"grid_column": null,
|
130 |
+
"grid_gap": null,
|
131 |
+
"grid_row": null,
|
132 |
+
"grid_template_areas": null,
|
133 |
+
"grid_template_columns": null,
|
134 |
+
"grid_template_rows": null,
|
135 |
+
"height": null,
|
136 |
+
"justify_content": null,
|
137 |
+
"justify_items": null,
|
138 |
+
"left": null,
|
139 |
+
"margin": null,
|
140 |
+
"max_height": null,
|
141 |
+
"max_width": null,
|
142 |
+
"min_height": null,
|
143 |
+
"min_width": null,
|
144 |
+
"object_fit": null,
|
145 |
+
"object_position": null,
|
146 |
+
"order": null,
|
147 |
+
"overflow": null,
|
148 |
+
"overflow_x": null,
|
149 |
+
"overflow_y": null,
|
150 |
+
"padding": null,
|
151 |
+
"right": null,
|
152 |
+
"top": null,
|
153 |
+
"visibility": null,
|
154 |
+
"width": null
|
155 |
+
}
|
156 |
+
},
|
157 |
+
"13d5e786f6294da2b6e5d90ca06c8593": {
|
158 |
+
"model_module": "@jupyter-widgets/base",
|
159 |
+
"model_name": "LayoutModel",
|
160 |
+
"model_module_version": "1.2.0",
|
161 |
+
"state": {
|
162 |
+
"_model_module": "@jupyter-widgets/base",
|
163 |
+
"_model_module_version": "1.2.0",
|
164 |
+
"_model_name": "LayoutModel",
|
165 |
+
"_view_count": null,
|
166 |
+
"_view_module": "@jupyter-widgets/base",
|
167 |
+
"_view_module_version": "1.2.0",
|
168 |
+
"_view_name": "LayoutView",
|
169 |
+
"align_content": null,
|
170 |
+
"align_items": null,
|
171 |
+
"align_self": null,
|
172 |
+
"border": null,
|
173 |
+
"bottom": null,
|
174 |
+
"display": null,
|
175 |
+
"flex": null,
|
176 |
+
"flex_flow": null,
|
177 |
+
"grid_area": null,
|
178 |
+
"grid_auto_columns": null,
|
179 |
+
"grid_auto_flow": null,
|
180 |
+
"grid_auto_rows": null,
|
181 |
+
"grid_column": null,
|
182 |
+
"grid_gap": null,
|
183 |
+
"grid_row": null,
|
184 |
+
"grid_template_areas": null,
|
185 |
+
"grid_template_columns": null,
|
186 |
+
"grid_template_rows": null,
|
187 |
+
"height": null,
|
188 |
+
"justify_content": null,
|
189 |
+
"justify_items": null,
|
190 |
+
"left": null,
|
191 |
+
"margin": null,
|
192 |
+
"max_height": null,
|
193 |
+
"max_width": null,
|
194 |
+
"min_height": null,
|
195 |
+
"min_width": null,
|
196 |
+
"object_fit": null,
|
197 |
+
"object_position": null,
|
198 |
+
"order": null,
|
199 |
+
"overflow": null,
|
200 |
+
"overflow_x": null,
|
201 |
+
"overflow_y": null,
|
202 |
+
"padding": null,
|
203 |
+
"right": null,
|
204 |
+
"top": null,
|
205 |
+
"visibility": null,
|
206 |
+
"width": null
|
207 |
+
}
|
208 |
+
},
|
209 |
+
"bbfa5943bc1c41dbaf3a2ef89ac8d0b3": {
|
210 |
+
"model_module": "@jupyter-widgets/controls",
|
211 |
+
"model_name": "DescriptionStyleModel",
|
212 |
+
"model_module_version": "1.5.0",
|
213 |
+
"state": {
|
214 |
+
"_model_module": "@jupyter-widgets/controls",
|
215 |
+
"_model_module_version": "1.5.0",
|
216 |
+
"_model_name": "DescriptionStyleModel",
|
217 |
+
"_view_count": null,
|
218 |
+
"_view_module": "@jupyter-widgets/base",
|
219 |
+
"_view_module_version": "1.2.0",
|
220 |
+
"_view_name": "StyleView",
|
221 |
+
"description_width": ""
|
222 |
+
}
|
223 |
+
},
|
224 |
+
"3ce089610ec446c19db3bae1baa45d7a": {
|
225 |
+
"model_module": "@jupyter-widgets/base",
|
226 |
+
"model_name": "LayoutModel",
|
227 |
+
"model_module_version": "1.2.0",
|
228 |
+
"state": {
|
229 |
+
"_model_module": "@jupyter-widgets/base",
|
230 |
+
"_model_module_version": "1.2.0",
|
231 |
+
"_model_name": "LayoutModel",
|
232 |
+
"_view_count": null,
|
233 |
+
"_view_module": "@jupyter-widgets/base",
|
234 |
+
"_view_module_version": "1.2.0",
|
235 |
+
"_view_name": "LayoutView",
|
236 |
+
"align_content": null,
|
237 |
+
"align_items": null,
|
238 |
+
"align_self": null,
|
239 |
+
"border": null,
|
240 |
+
"bottom": null,
|
241 |
+
"display": null,
|
242 |
+
"flex": null,
|
243 |
+
"flex_flow": null,
|
244 |
+
"grid_area": null,
|
245 |
+
"grid_auto_columns": null,
|
246 |
+
"grid_auto_flow": null,
|
247 |
+
"grid_auto_rows": null,
|
248 |
+
"grid_column": null,
|
249 |
+
"grid_gap": null,
|
250 |
+
"grid_row": null,
|
251 |
+
"grid_template_areas": null,
|
252 |
+
"grid_template_columns": null,
|
253 |
+
"grid_template_rows": null,
|
254 |
+
"height": null,
|
255 |
+
"justify_content": null,
|
256 |
+
"justify_items": null,
|
257 |
+
"left": null,
|
258 |
+
"margin": null,
|
259 |
+
"max_height": null,
|
260 |
+
"max_width": null,
|
261 |
+
"min_height": null,
|
262 |
+
"min_width": null,
|
263 |
+
"object_fit": null,
|
264 |
+
"object_position": null,
|
265 |
+
"order": null,
|
266 |
+
"overflow": null,
|
267 |
+
"overflow_x": null,
|
268 |
+
"overflow_y": null,
|
269 |
+
"padding": null,
|
270 |
+
"right": null,
|
271 |
+
"top": null,
|
272 |
+
"visibility": null,
|
273 |
+
"width": null
|
274 |
+
}
|
275 |
+
},
|
276 |
+
"bcf06ca3212c43e0a5db7e7d4ea01375": {
|
277 |
+
"model_module": "@jupyter-widgets/controls",
|
278 |
+
"model_name": "ProgressStyleModel",
|
279 |
+
"model_module_version": "1.5.0",
|
280 |
+
"state": {
|
281 |
+
"_model_module": "@jupyter-widgets/controls",
|
282 |
+
"_model_module_version": "1.5.0",
|
283 |
+
"_model_name": "ProgressStyleModel",
|
284 |
+
"_view_count": null,
|
285 |
+
"_view_module": "@jupyter-widgets/base",
|
286 |
+
"_view_module_version": "1.2.0",
|
287 |
+
"_view_name": "StyleView",
|
288 |
+
"bar_color": null,
|
289 |
+
"description_width": ""
|
290 |
+
}
|
291 |
+
},
|
292 |
+
"aab6a478cec84b25a29bc0ed4ee2aaac": {
|
293 |
+
"model_module": "@jupyter-widgets/base",
|
294 |
+
"model_name": "LayoutModel",
|
295 |
+
"model_module_version": "1.2.0",
|
296 |
+
"state": {
|
297 |
+
"_model_module": "@jupyter-widgets/base",
|
298 |
+
"_model_module_version": "1.2.0",
|
299 |
+
"_model_name": "LayoutModel",
|
300 |
+
"_view_count": null,
|
301 |
+
"_view_module": "@jupyter-widgets/base",
|
302 |
+
"_view_module_version": "1.2.0",
|
303 |
+
"_view_name": "LayoutView",
|
304 |
+
"align_content": null,
|
305 |
+
"align_items": null,
|
306 |
+
"align_self": null,
|
307 |
+
"border": null,
|
308 |
+
"bottom": null,
|
309 |
+
"display": null,
|
310 |
+
"flex": null,
|
311 |
+
"flex_flow": null,
|
312 |
+
"grid_area": null,
|
313 |
+
"grid_auto_columns": null,
|
314 |
+
"grid_auto_flow": null,
|
315 |
+
"grid_auto_rows": null,
|
316 |
+
"grid_column": null,
|
317 |
+
"grid_gap": null,
|
318 |
+
"grid_row": null,
|
319 |
+
"grid_template_areas": null,
|
320 |
+
"grid_template_columns": null,
|
321 |
+
"grid_template_rows": null,
|
322 |
+
"height": null,
|
323 |
+
"justify_content": null,
|
324 |
+
"justify_items": null,
|
325 |
+
"left": null,
|
326 |
+
"margin": null,
|
327 |
+
"max_height": null,
|
328 |
+
"max_width": null,
|
329 |
+
"min_height": null,
|
330 |
+
"min_width": null,
|
331 |
+
"object_fit": null,
|
332 |
+
"object_position": null,
|
333 |
+
"order": null,
|
334 |
+
"overflow": null,
|
335 |
+
"overflow_x": null,
|
336 |
+
"overflow_y": null,
|
337 |
+
"padding": null,
|
338 |
+
"right": null,
|
339 |
+
"top": null,
|
340 |
+
"visibility": null,
|
341 |
+
"width": null
|
342 |
+
}
|
343 |
+
},
|
344 |
+
"3e6f987e297b4a2b8f3eb1b12b4b67af": {
|
345 |
+
"model_module": "@jupyter-widgets/controls",
|
346 |
+
"model_name": "DescriptionStyleModel",
|
347 |
+
"model_module_version": "1.5.0",
|
348 |
+
"state": {
|
349 |
+
"_model_module": "@jupyter-widgets/controls",
|
350 |
+
"_model_module_version": "1.5.0",
|
351 |
+
"_model_name": "DescriptionStyleModel",
|
352 |
+
"_view_count": null,
|
353 |
+
"_view_module": "@jupyter-widgets/base",
|
354 |
+
"_view_module_version": "1.2.0",
|
355 |
+
"_view_name": "StyleView",
|
356 |
+
"description_width": ""
|
357 |
+
}
|
358 |
+
},
|
359 |
+
"3a52fbc3755a4323b749da73142e5871": {
|
360 |
+
"model_module": "@jupyter-widgets/controls",
|
361 |
+
"model_name": "HBoxModel",
|
362 |
+
"model_module_version": "1.5.0",
|
363 |
+
"state": {
|
364 |
+
"_dom_classes": [],
|
365 |
+
"_model_module": "@jupyter-widgets/controls",
|
366 |
+
"_model_module_version": "1.5.0",
|
367 |
+
"_model_name": "HBoxModel",
|
368 |
+
"_view_count": null,
|
369 |
+
"_view_module": "@jupyter-widgets/controls",
|
370 |
+
"_view_module_version": "1.5.0",
|
371 |
+
"_view_name": "HBoxView",
|
372 |
+
"box_style": "",
|
373 |
+
"children": [
|
374 |
+
"IPY_MODEL_7b2019506d154d118134985ee7e8ea43",
|
375 |
+
"IPY_MODEL_3a51d4dbd7654b9ab7b69a50605d29e9",
|
376 |
+
"IPY_MODEL_c5dd0d556c9c486baaedf3ca54cef54a"
|
377 |
+
],
|
378 |
+
"layout": "IPY_MODEL_3b40837351f44c0f92e3e5af55da3e21"
|
379 |
+
}
|
380 |
+
},
|
381 |
+
"7b2019506d154d118134985ee7e8ea43": {
|
382 |
+
"model_module": "@jupyter-widgets/controls",
|
383 |
+
"model_name": "HTMLModel",
|
384 |
+
"model_module_version": "1.5.0",
|
385 |
+
"state": {
|
386 |
+
"_dom_classes": [],
|
387 |
+
"_model_module": "@jupyter-widgets/controls",
|
388 |
+
"_model_module_version": "1.5.0",
|
389 |
+
"_model_name": "HTMLModel",
|
390 |
+
"_view_count": null,
|
391 |
+
"_view_module": "@jupyter-widgets/controls",
|
392 |
+
"_view_module_version": "1.5.0",
|
393 |
+
"_view_name": "HTMLView",
|
394 |
+
"description": "",
|
395 |
+
"description_tooltip": null,
|
396 |
+
"layout": "IPY_MODEL_85a7a49bf87c4160b241a878c6b12f81",
|
397 |
+
"placeholder": "",
|
398 |
+
"style": "IPY_MODEL_9510c227a23e4d829ad9366b41babae6",
|
399 |
+
"value": "Downloading (…)solve/main/vocab.txt: 100%"
|
400 |
+
}
|
401 |
+
},
|
402 |
+
"3a51d4dbd7654b9ab7b69a50605d29e9": {
|
403 |
+
"model_module": "@jupyter-widgets/controls",
|
404 |
+
"model_name": "FloatProgressModel",
|
405 |
+
"model_module_version": "1.5.0",
|
406 |
+
"state": {
|
407 |
+
"_dom_classes": [],
|
408 |
+
"_model_module": "@jupyter-widgets/controls",
|
409 |
+
"_model_module_version": "1.5.0",
|
410 |
+
"_model_name": "FloatProgressModel",
|
411 |
+
"_view_count": null,
|
412 |
+
"_view_module": "@jupyter-widgets/controls",
|
413 |
+
"_view_module_version": "1.5.0",
|
414 |
+
"_view_name": "ProgressView",
|
415 |
+
"bar_style": "success",
|
416 |
+
"description": "",
|
417 |
+
"description_tooltip": null,
|
418 |
+
"layout": "IPY_MODEL_b78852da0af54675a3a1b65729eed99f",
|
419 |
+
"max": 231508,
|
420 |
+
"min": 0,
|
421 |
+
"orientation": "horizontal",
|
422 |
+
"style": "IPY_MODEL_5638394766b640cdaf9208a8794636d2",
|
423 |
+
"value": 231508
|
424 |
+
}
|
425 |
+
},
|
426 |
+
"c5dd0d556c9c486baaedf3ca54cef54a": {
|
427 |
+
"model_module": "@jupyter-widgets/controls",
|
428 |
+
"model_name": "HTMLModel",
|
429 |
+
"model_module_version": "1.5.0",
|
430 |
+
"state": {
|
431 |
+
"_dom_classes": [],
|
432 |
+
"_model_module": "@jupyter-widgets/controls",
|
433 |
+
"_model_module_version": "1.5.0",
|
434 |
+
"_model_name": "HTMLModel",
|
435 |
+
"_view_count": null,
|
436 |
+
"_view_module": "@jupyter-widgets/controls",
|
437 |
+
"_view_module_version": "1.5.0",
|
438 |
+
"_view_name": "HTMLView",
|
439 |
+
"description": "",
|
440 |
+
"description_tooltip": null,
|
441 |
+
"layout": "IPY_MODEL_67535c820a3b407bb801873d788ba535",
|
442 |
+
"placeholder": "",
|
443 |
+
"style": "IPY_MODEL_365db64fb2c847a5a41b5d057d77600c",
|
444 |
+
"value": " 232k/232k [00:00<00:00, 6.66MB/s]"
|
445 |
+
}
|
446 |
+
},
|
447 |
+
"3b40837351f44c0f92e3e5af55da3e21": {
|
448 |
+
"model_module": "@jupyter-widgets/base",
|
449 |
+
"model_name": "LayoutModel",
|
450 |
+
"model_module_version": "1.2.0",
|
451 |
+
"state": {
|
452 |
+
"_model_module": "@jupyter-widgets/base",
|
453 |
+
"_model_module_version": "1.2.0",
|
454 |
+
"_model_name": "LayoutModel",
|
455 |
+
"_view_count": null,
|
456 |
+
"_view_module": "@jupyter-widgets/base",
|
457 |
+
"_view_module_version": "1.2.0",
|
458 |
+
"_view_name": "LayoutView",
|
459 |
+
"align_content": null,
|
460 |
+
"align_items": null,
|
461 |
+
"align_self": null,
|
462 |
+
"border": null,
|
463 |
+
"bottom": null,
|
464 |
+
"display": null,
|
465 |
+
"flex": null,
|
466 |
+
"flex_flow": null,
|
467 |
+
"grid_area": null,
|
468 |
+
"grid_auto_columns": null,
|
469 |
+
"grid_auto_flow": null,
|
470 |
+
"grid_auto_rows": null,
|
471 |
+
"grid_column": null,
|
472 |
+
"grid_gap": null,
|
473 |
+
"grid_row": null,
|
474 |
+
"grid_template_areas": null,
|
475 |
+
"grid_template_columns": null,
|
476 |
+
"grid_template_rows": null,
|
477 |
+
"height": null,
|
478 |
+
"justify_content": null,
|
479 |
+
"justify_items": null,
|
480 |
+
"left": null,
|
481 |
+
"margin": null,
|
482 |
+
"max_height": null,
|
483 |
+
"max_width": null,
|
484 |
+
"min_height": null,
|
485 |
+
"min_width": null,
|
486 |
+
"object_fit": null,
|
487 |
+
"object_position": null,
|
488 |
+
"order": null,
|
489 |
+
"overflow": null,
|
490 |
+
"overflow_x": null,
|
491 |
+
"overflow_y": null,
|
492 |
+
"padding": null,
|
493 |
+
"right": null,
|
494 |
+
"top": null,
|
495 |
+
"visibility": null,
|
496 |
+
"width": null
|
497 |
+
}
|
498 |
+
},
|
499 |
+
"85a7a49bf87c4160b241a878c6b12f81": {
|
500 |
+
"model_module": "@jupyter-widgets/base",
|
501 |
+
"model_name": "LayoutModel",
|
502 |
+
"model_module_version": "1.2.0",
|
503 |
+
"state": {
|
504 |
+
"_model_module": "@jupyter-widgets/base",
|
505 |
+
"_model_module_version": "1.2.0",
|
506 |
+
"_model_name": "LayoutModel",
|
507 |
+
"_view_count": null,
|
508 |
+
"_view_module": "@jupyter-widgets/base",
|
509 |
+
"_view_module_version": "1.2.0",
|
510 |
+
"_view_name": "LayoutView",
|
511 |
+
"align_content": null,
|
512 |
+
"align_items": null,
|
513 |
+
"align_self": null,
|
514 |
+
"border": null,
|
515 |
+
"bottom": null,
|
516 |
+
"display": null,
|
517 |
+
"flex": null,
|
518 |
+
"flex_flow": null,
|
519 |
+
"grid_area": null,
|
520 |
+
"grid_auto_columns": null,
|
521 |
+
"grid_auto_flow": null,
|
522 |
+
"grid_auto_rows": null,
|
523 |
+
"grid_column": null,
|
524 |
+
"grid_gap": null,
|
525 |
+
"grid_row": null,
|
526 |
+
"grid_template_areas": null,
|
527 |
+
"grid_template_columns": null,
|
528 |
+
"grid_template_rows": null,
|
529 |
+
"height": null,
|
530 |
+
"justify_content": null,
|
531 |
+
"justify_items": null,
|
532 |
+
"left": null,
|
533 |
+
"margin": null,
|
534 |
+
"max_height": null,
|
535 |
+
"max_width": null,
|
536 |
+
"min_height": null,
|
537 |
+
"min_width": null,
|
538 |
+
"object_fit": null,
|
539 |
+
"object_position": null,
|
540 |
+
"order": null,
|
541 |
+
"overflow": null,
|
542 |
+
"overflow_x": null,
|
543 |
+
"overflow_y": null,
|
544 |
+
"padding": null,
|
545 |
+
"right": null,
|
546 |
+
"top": null,
|
547 |
+
"visibility": null,
|
548 |
+
"width": null
|
549 |
+
}
|
550 |
+
},
|
551 |
+
"9510c227a23e4d829ad9366b41babae6": {
|
552 |
+
"model_module": "@jupyter-widgets/controls",
|
553 |
+
"model_name": "DescriptionStyleModel",
|
554 |
+
"model_module_version": "1.5.0",
|
555 |
+
"state": {
|
556 |
+
"_model_module": "@jupyter-widgets/controls",
|
557 |
+
"_model_module_version": "1.5.0",
|
558 |
+
"_model_name": "DescriptionStyleModel",
|
559 |
+
"_view_count": null,
|
560 |
+
"_view_module": "@jupyter-widgets/base",
|
561 |
+
"_view_module_version": "1.2.0",
|
562 |
+
"_view_name": "StyleView",
|
563 |
+
"description_width": ""
|
564 |
+
}
|
565 |
+
},
|
566 |
+
"b78852da0af54675a3a1b65729eed99f": {
|
567 |
+
"model_module": "@jupyter-widgets/base",
|
568 |
+
"model_name": "LayoutModel",
|
569 |
+
"model_module_version": "1.2.0",
|
570 |
+
"state": {
|
571 |
+
"_model_module": "@jupyter-widgets/base",
|
572 |
+
"_model_module_version": "1.2.0",
|
573 |
+
"_model_name": "LayoutModel",
|
574 |
+
"_view_count": null,
|
575 |
+
"_view_module": "@jupyter-widgets/base",
|
576 |
+
"_view_module_version": "1.2.0",
|
577 |
+
"_view_name": "LayoutView",
|
578 |
+
"align_content": null,
|
579 |
+
"align_items": null,
|
580 |
+
"align_self": null,
|
581 |
+
"border": null,
|
582 |
+
"bottom": null,
|
583 |
+
"display": null,
|
584 |
+
"flex": null,
|
585 |
+
"flex_flow": null,
|
586 |
+
"grid_area": null,
|
587 |
+
"grid_auto_columns": null,
|
588 |
+
"grid_auto_flow": null,
|
589 |
+
"grid_auto_rows": null,
|
590 |
+
"grid_column": null,
|
591 |
+
"grid_gap": null,
|
592 |
+
"grid_row": null,
|
593 |
+
"grid_template_areas": null,
|
594 |
+
"grid_template_columns": null,
|
595 |
+
"grid_template_rows": null,
|
596 |
+
"height": null,
|
597 |
+
"justify_content": null,
|
598 |
+
"justify_items": null,
|
599 |
+
"left": null,
|
600 |
+
"margin": null,
|
601 |
+
"max_height": null,
|
602 |
+
"max_width": null,
|
603 |
+
"min_height": null,
|
604 |
+
"min_width": null,
|
605 |
+
"object_fit": null,
|
606 |
+
"object_position": null,
|
607 |
+
"order": null,
|
608 |
+
"overflow": null,
|
609 |
+
"overflow_x": null,
|
610 |
+
"overflow_y": null,
|
611 |
+
"padding": null,
|
612 |
+
"right": null,
|
613 |
+
"top": null,
|
614 |
+
"visibility": null,
|
615 |
+
"width": null
|
616 |
+
}
|
617 |
+
},
|
618 |
+
"5638394766b640cdaf9208a8794636d2": {
|
619 |
+
"model_module": "@jupyter-widgets/controls",
|
620 |
+
"model_name": "ProgressStyleModel",
|
621 |
+
"model_module_version": "1.5.0",
|
622 |
+
"state": {
|
623 |
+
"_model_module": "@jupyter-widgets/controls",
|
624 |
+
"_model_module_version": "1.5.0",
|
625 |
+
"_model_name": "ProgressStyleModel",
|
626 |
+
"_view_count": null,
|
627 |
+
"_view_module": "@jupyter-widgets/base",
|
628 |
+
"_view_module_version": "1.2.0",
|
629 |
+
"_view_name": "StyleView",
|
630 |
+
"bar_color": null,
|
631 |
+
"description_width": ""
|
632 |
+
}
|
633 |
+
},
|
634 |
+
"67535c820a3b407bb801873d788ba535": {
|
635 |
+
"model_module": "@jupyter-widgets/base",
|
636 |
+
"model_name": "LayoutModel",
|
637 |
+
"model_module_version": "1.2.0",
|
638 |
+
"state": {
|
639 |
+
"_model_module": "@jupyter-widgets/base",
|
640 |
+
"_model_module_version": "1.2.0",
|
641 |
+
"_model_name": "LayoutModel",
|
642 |
+
"_view_count": null,
|
643 |
+
"_view_module": "@jupyter-widgets/base",
|
644 |
+
"_view_module_version": "1.2.0",
|
645 |
+
"_view_name": "LayoutView",
|
646 |
+
"align_content": null,
|
647 |
+
"align_items": null,
|
648 |
+
"align_self": null,
|
649 |
+
"border": null,
|
650 |
+
"bottom": null,
|
651 |
+
"display": null,
|
652 |
+
"flex": null,
|
653 |
+
"flex_flow": null,
|
654 |
+
"grid_area": null,
|
655 |
+
"grid_auto_columns": null,
|
656 |
+
"grid_auto_flow": null,
|
657 |
+
"grid_auto_rows": null,
|
658 |
+
"grid_column": null,
|
659 |
+
"grid_gap": null,
|
660 |
+
"grid_row": null,
|
661 |
+
"grid_template_areas": null,
|
662 |
+
"grid_template_columns": null,
|
663 |
+
"grid_template_rows": null,
|
664 |
+
"height": null,
|
665 |
+
"justify_content": null,
|
666 |
+
"justify_items": null,
|
667 |
+
"left": null,
|
668 |
+
"margin": null,
|
669 |
+
"max_height": null,
|
670 |
+
"max_width": null,
|
671 |
+
"min_height": null,
|
672 |
+
"min_width": null,
|
673 |
+
"object_fit": null,
|
674 |
+
"object_position": null,
|
675 |
+
"order": null,
|
676 |
+
"overflow": null,
|
677 |
+
"overflow_x": null,
|
678 |
+
"overflow_y": null,
|
679 |
+
"padding": null,
|
680 |
+
"right": null,
|
681 |
+
"top": null,
|
682 |
+
"visibility": null,
|
683 |
+
"width": null
|
684 |
+
}
|
685 |
+
},
|
686 |
+
"365db64fb2c847a5a41b5d057d77600c": {
|
687 |
+
"model_module": "@jupyter-widgets/controls",
|
688 |
+
"model_name": "DescriptionStyleModel",
|
689 |
+
"model_module_version": "1.5.0",
|
690 |
+
"state": {
|
691 |
+
"_model_module": "@jupyter-widgets/controls",
|
692 |
+
"_model_module_version": "1.5.0",
|
693 |
+
"_model_name": "DescriptionStyleModel",
|
694 |
+
"_view_count": null,
|
695 |
+
"_view_module": "@jupyter-widgets/base",
|
696 |
+
"_view_module_version": "1.2.0",
|
697 |
+
"_view_name": "StyleView",
|
698 |
+
"description_width": ""
|
699 |
+
}
|
700 |
+
},
|
701 |
+
"d0334d8257ce422597da3d29ac22cd4f": {
|
702 |
+
"model_module": "@jupyter-widgets/controls",
|
703 |
+
"model_name": "HBoxModel",
|
704 |
+
"model_module_version": "1.5.0",
|
705 |
+
"state": {
|
706 |
+
"_dom_classes": [],
|
707 |
+
"_model_module": "@jupyter-widgets/controls",
|
708 |
+
"_model_module_version": "1.5.0",
|
709 |
+
"_model_name": "HBoxModel",
|
710 |
+
"_view_count": null,
|
711 |
+
"_view_module": "@jupyter-widgets/controls",
|
712 |
+
"_view_module_version": "1.5.0",
|
713 |
+
"_view_name": "HBoxView",
|
714 |
+
"box_style": "",
|
715 |
+
"children": [
|
716 |
+
"IPY_MODEL_eae4e7789fe54a7b98bfda99d20360bd",
|
717 |
+
"IPY_MODEL_5f48726592fe446ea43b7bdec668919b",
|
718 |
+
"IPY_MODEL_3edcc888477a440d81e8b6df174966cd"
|
719 |
+
],
|
720 |
+
"layout": "IPY_MODEL_9a23d53c1e7a448282c1aaa36d26c4ec"
|
721 |
+
}
|
722 |
+
},
|
723 |
+
"eae4e7789fe54a7b98bfda99d20360bd": {
|
724 |
+
"model_module": "@jupyter-widgets/controls",
|
725 |
+
"model_name": "HTMLModel",
|
726 |
+
"model_module_version": "1.5.0",
|
727 |
+
"state": {
|
728 |
+
"_dom_classes": [],
|
729 |
+
"_model_module": "@jupyter-widgets/controls",
|
730 |
+
"_model_module_version": "1.5.0",
|
731 |
+
"_model_name": "HTMLModel",
|
732 |
+
"_view_count": null,
|
733 |
+
"_view_module": "@jupyter-widgets/controls",
|
734 |
+
"_view_module_version": "1.5.0",
|
735 |
+
"_view_name": "HTMLView",
|
736 |
+
"description": "",
|
737 |
+
"description_tooltip": null,
|
738 |
+
"layout": "IPY_MODEL_e8e2739386c045078bf2cc3987534a93",
|
739 |
+
"placeholder": "",
|
740 |
+
"style": "IPY_MODEL_bb14cd687abb432b8e2a01cd58e7c550",
|
741 |
+
"value": "Downloading (…)/main/tokenizer.json: 100%"
|
742 |
+
}
|
743 |
+
},
|
744 |
+
"5f48726592fe446ea43b7bdec668919b": {
|
745 |
+
"model_module": "@jupyter-widgets/controls",
|
746 |
+
"model_name": "FloatProgressModel",
|
747 |
+
"model_module_version": "1.5.0",
|
748 |
+
"state": {
|
749 |
+
"_dom_classes": [],
|
750 |
+
"_model_module": "@jupyter-widgets/controls",
|
751 |
+
"_model_module_version": "1.5.0",
|
752 |
+
"_model_name": "FloatProgressModel",
|
753 |
+
"_view_count": null,
|
754 |
+
"_view_module": "@jupyter-widgets/controls",
|
755 |
+
"_view_module_version": "1.5.0",
|
756 |
+
"_view_name": "ProgressView",
|
757 |
+
"bar_style": "success",
|
758 |
+
"description": "",
|
759 |
+
"description_tooltip": null,
|
760 |
+
"layout": "IPY_MODEL_c5c6159f813949a3851fb158a992a65c",
|
761 |
+
"max": 466062,
|
762 |
+
"min": 0,
|
763 |
+
"orientation": "horizontal",
|
764 |
+
"style": "IPY_MODEL_03337be3fcd94f388ae2650078269a55",
|
765 |
+
"value": 466062
|
766 |
+
}
|
767 |
+
},
|
768 |
+
"3edcc888477a440d81e8b6df174966cd": {
|
769 |
+
"model_module": "@jupyter-widgets/controls",
|
770 |
+
"model_name": "HTMLModel",
|
771 |
+
"model_module_version": "1.5.0",
|
772 |
+
"state": {
|
773 |
+
"_dom_classes": [],
|
774 |
+
"_model_module": "@jupyter-widgets/controls",
|
775 |
+
"_model_module_version": "1.5.0",
|
776 |
+
"_model_name": "HTMLModel",
|
777 |
+
"_view_count": null,
|
778 |
+
"_view_module": "@jupyter-widgets/controls",
|
779 |
+
"_view_module_version": "1.5.0",
|
780 |
+
"_view_name": "HTMLView",
|
781 |
+
"description": "",
|
782 |
+
"description_tooltip": null,
|
783 |
+
"layout": "IPY_MODEL_ff28b23c163240dc9b543f340b9d2d52",
|
784 |
+
"placeholder": "",
|
785 |
+
"style": "IPY_MODEL_110e8e19d5f242829cc4cafdb9a10cb2",
|
786 |
+
"value": " 466k/466k [00:00<00:00, 15.5MB/s]"
|
787 |
+
}
|
788 |
+
},
|
789 |
+
"9a23d53c1e7a448282c1aaa36d26c4ec": {
|
790 |
+
"model_module": "@jupyter-widgets/base",
|
791 |
+
"model_name": "LayoutModel",
|
792 |
+
"model_module_version": "1.2.0",
|
793 |
+
"state": {
|
794 |
+
"_model_module": "@jupyter-widgets/base",
|
795 |
+
"_model_module_version": "1.2.0",
|
796 |
+
"_model_name": "LayoutModel",
|
797 |
+
"_view_count": null,
|
798 |
+
"_view_module": "@jupyter-widgets/base",
|
799 |
+
"_view_module_version": "1.2.0",
|
800 |
+
"_view_name": "LayoutView",
|
801 |
+
"align_content": null,
|
802 |
+
"align_items": null,
|
803 |
+
"align_self": null,
|
804 |
+
"border": null,
|
805 |
+
"bottom": null,
|
806 |
+
"display": null,
|
807 |
+
"flex": null,
|
808 |
+
"flex_flow": null,
|
809 |
+
"grid_area": null,
|
810 |
+
"grid_auto_columns": null,
|
811 |
+
"grid_auto_flow": null,
|
812 |
+
"grid_auto_rows": null,
|
813 |
+
"grid_column": null,
|
814 |
+
"grid_gap": null,
|
815 |
+
"grid_row": null,
|
816 |
+
"grid_template_areas": null,
|
817 |
+
"grid_template_columns": null,
|
818 |
+
"grid_template_rows": null,
|
819 |
+
"height": null,
|
820 |
+
"justify_content": null,
|
821 |
+
"justify_items": null,
|
822 |
+
"left": null,
|
823 |
+
"margin": null,
|
824 |
+
"max_height": null,
|
825 |
+
"max_width": null,
|
826 |
+
"min_height": null,
|
827 |
+
"min_width": null,
|
828 |
+
"object_fit": null,
|
829 |
+
"object_position": null,
|
830 |
+
"order": null,
|
831 |
+
"overflow": null,
|
832 |
+
"overflow_x": null,
|
833 |
+
"overflow_y": null,
|
834 |
+
"padding": null,
|
835 |
+
"right": null,
|
836 |
+
"top": null,
|
837 |
+
"visibility": null,
|
838 |
+
"width": null
|
839 |
+
}
|
840 |
+
},
|
841 |
+
"e8e2739386c045078bf2cc3987534a93": {
|
842 |
+
"model_module": "@jupyter-widgets/base",
|
843 |
+
"model_name": "LayoutModel",
|
844 |
+
"model_module_version": "1.2.0",
|
845 |
+
"state": {
|
846 |
+
"_model_module": "@jupyter-widgets/base",
|
847 |
+
"_model_module_version": "1.2.0",
|
848 |
+
"_model_name": "LayoutModel",
|
849 |
+
"_view_count": null,
|
850 |
+
"_view_module": "@jupyter-widgets/base",
|
851 |
+
"_view_module_version": "1.2.0",
|
852 |
+
"_view_name": "LayoutView",
|
853 |
+
"align_content": null,
|
854 |
+
"align_items": null,
|
855 |
+
"align_self": null,
|
856 |
+
"border": null,
|
857 |
+
"bottom": null,
|
858 |
+
"display": null,
|
859 |
+
"flex": null,
|
860 |
+
"flex_flow": null,
|
861 |
+
"grid_area": null,
|
862 |
+
"grid_auto_columns": null,
|
863 |
+
"grid_auto_flow": null,
|
864 |
+
"grid_auto_rows": null,
|
865 |
+
"grid_column": null,
|
866 |
+
"grid_gap": null,
|
867 |
+
"grid_row": null,
|
868 |
+
"grid_template_areas": null,
|
869 |
+
"grid_template_columns": null,
|
870 |
+
"grid_template_rows": null,
|
871 |
+
"height": null,
|
872 |
+
"justify_content": null,
|
873 |
+
"justify_items": null,
|
874 |
+
"left": null,
|
875 |
+
"margin": null,
|
876 |
+
"max_height": null,
|
877 |
+
"max_width": null,
|
878 |
+
"min_height": null,
|
879 |
+
"min_width": null,
|
880 |
+
"object_fit": null,
|
881 |
+
"object_position": null,
|
882 |
+
"order": null,
|
883 |
+
"overflow": null,
|
884 |
+
"overflow_x": null,
|
885 |
+
"overflow_y": null,
|
886 |
+
"padding": null,
|
887 |
+
"right": null,
|
888 |
+
"top": null,
|
889 |
+
"visibility": null,
|
890 |
+
"width": null
|
891 |
+
}
|
892 |
+
},
|
893 |
+
"bb14cd687abb432b8e2a01cd58e7c550": {
|
894 |
+
"model_module": "@jupyter-widgets/controls",
|
895 |
+
"model_name": "DescriptionStyleModel",
|
896 |
+
"model_module_version": "1.5.0",
|
897 |
+
"state": {
|
898 |
+
"_model_module": "@jupyter-widgets/controls",
|
899 |
+
"_model_module_version": "1.5.0",
|
900 |
+
"_model_name": "DescriptionStyleModel",
|
901 |
+
"_view_count": null,
|
902 |
+
"_view_module": "@jupyter-widgets/base",
|
903 |
+
"_view_module_version": "1.2.0",
|
904 |
+
"_view_name": "StyleView",
|
905 |
+
"description_width": ""
|
906 |
+
}
|
907 |
+
},
|
908 |
+
"c5c6159f813949a3851fb158a992a65c": {
|
909 |
+
"model_module": "@jupyter-widgets/base",
|
910 |
+
"model_name": "LayoutModel",
|
911 |
+
"model_module_version": "1.2.0",
|
912 |
+
"state": {
|
913 |
+
"_model_module": "@jupyter-widgets/base",
|
914 |
+
"_model_module_version": "1.2.0",
|
915 |
+
"_model_name": "LayoutModel",
|
916 |
+
"_view_count": null,
|
917 |
+
"_view_module": "@jupyter-widgets/base",
|
918 |
+
"_view_module_version": "1.2.0",
|
919 |
+
"_view_name": "LayoutView",
|
920 |
+
"align_content": null,
|
921 |
+
"align_items": null,
|
922 |
+
"align_self": null,
|
923 |
+
"border": null,
|
924 |
+
"bottom": null,
|
925 |
+
"display": null,
|
926 |
+
"flex": null,
|
927 |
+
"flex_flow": null,
|
928 |
+
"grid_area": null,
|
929 |
+
"grid_auto_columns": null,
|
930 |
+
"grid_auto_flow": null,
|
931 |
+
"grid_auto_rows": null,
|
932 |
+
"grid_column": null,
|
933 |
+
"grid_gap": null,
|
934 |
+
"grid_row": null,
|
935 |
+
"grid_template_areas": null,
|
936 |
+
"grid_template_columns": null,
|
937 |
+
"grid_template_rows": null,
|
938 |
+
"height": null,
|
939 |
+
"justify_content": null,
|
940 |
+
"justify_items": null,
|
941 |
+
"left": null,
|
942 |
+
"margin": null,
|
943 |
+
"max_height": null,
|
944 |
+
"max_width": null,
|
945 |
+
"min_height": null,
|
946 |
+
"min_width": null,
|
947 |
+
"object_fit": null,
|
948 |
+
"object_position": null,
|
949 |
+
"order": null,
|
950 |
+
"overflow": null,
|
951 |
+
"overflow_x": null,
|
952 |
+
"overflow_y": null,
|
953 |
+
"padding": null,
|
954 |
+
"right": null,
|
955 |
+
"top": null,
|
956 |
+
"visibility": null,
|
957 |
+
"width": null
|
958 |
+
}
|
959 |
+
},
|
960 |
+
"03337be3fcd94f388ae2650078269a55": {
|
961 |
+
"model_module": "@jupyter-widgets/controls",
|
962 |
+
"model_name": "ProgressStyleModel",
|
963 |
+
"model_module_version": "1.5.0",
|
964 |
+
"state": {
|
965 |
+
"_model_module": "@jupyter-widgets/controls",
|
966 |
+
"_model_module_version": "1.5.0",
|
967 |
+
"_model_name": "ProgressStyleModel",
|
968 |
+
"_view_count": null,
|
969 |
+
"_view_module": "@jupyter-widgets/base",
|
970 |
+
"_view_module_version": "1.2.0",
|
971 |
+
"_view_name": "StyleView",
|
972 |
+
"bar_color": null,
|
973 |
+
"description_width": ""
|
974 |
+
}
|
975 |
+
},
|
976 |
+
"ff28b23c163240dc9b543f340b9d2d52": {
|
977 |
+
"model_module": "@jupyter-widgets/base",
|
978 |
+
"model_name": "LayoutModel",
|
979 |
+
"model_module_version": "1.2.0",
|
980 |
+
"state": {
|
981 |
+
"_model_module": "@jupyter-widgets/base",
|
982 |
+
"_model_module_version": "1.2.0",
|
983 |
+
"_model_name": "LayoutModel",
|
984 |
+
"_view_count": null,
|
985 |
+
"_view_module": "@jupyter-widgets/base",
|
986 |
+
"_view_module_version": "1.2.0",
|
987 |
+
"_view_name": "LayoutView",
|
988 |
+
"align_content": null,
|
989 |
+
"align_items": null,
|
990 |
+
"align_self": null,
|
991 |
+
"border": null,
|
992 |
+
"bottom": null,
|
993 |
+
"display": null,
|
994 |
+
"flex": null,
|
995 |
+
"flex_flow": null,
|
996 |
+
"grid_area": null,
|
997 |
+
"grid_auto_columns": null,
|
998 |
+
"grid_auto_flow": null,
|
999 |
+
"grid_auto_rows": null,
|
1000 |
+
"grid_column": null,
|
1001 |
+
"grid_gap": null,
|
1002 |
+
"grid_row": null,
|
1003 |
+
"grid_template_areas": null,
|
1004 |
+
"grid_template_columns": null,
|
1005 |
+
"grid_template_rows": null,
|
1006 |
+
"height": null,
|
1007 |
+
"justify_content": null,
|
1008 |
+
"justify_items": null,
|
1009 |
+
"left": null,
|
1010 |
+
"margin": null,
|
1011 |
+
"max_height": null,
|
1012 |
+
"max_width": null,
|
1013 |
+
"min_height": null,
|
1014 |
+
"min_width": null,
|
1015 |
+
"object_fit": null,
|
1016 |
+
"object_position": null,
|
1017 |
+
"order": null,
|
1018 |
+
"overflow": null,
|
1019 |
+
"overflow_x": null,
|
1020 |
+
"overflow_y": null,
|
1021 |
+
"padding": null,
|
1022 |
+
"right": null,
|
1023 |
+
"top": null,
|
1024 |
+
"visibility": null,
|
1025 |
+
"width": null
|
1026 |
+
}
|
1027 |
+
},
|
1028 |
+
"110e8e19d5f242829cc4cafdb9a10cb2": {
|
1029 |
+
"model_module": "@jupyter-widgets/controls",
|
1030 |
+
"model_name": "DescriptionStyleModel",
|
1031 |
+
"model_module_version": "1.5.0",
|
1032 |
+
"state": {
|
1033 |
+
"_model_module": "@jupyter-widgets/controls",
|
1034 |
+
"_model_module_version": "1.5.0",
|
1035 |
+
"_model_name": "DescriptionStyleModel",
|
1036 |
+
"_view_count": null,
|
1037 |
+
"_view_module": "@jupyter-widgets/base",
|
1038 |
+
"_view_module_version": "1.2.0",
|
1039 |
+
"_view_name": "StyleView",
|
1040 |
+
"description_width": ""
|
1041 |
+
}
|
1042 |
+
},
|
1043 |
+
"ee6313a98fd041c9b755be6b6a94ebff": {
|
1044 |
+
"model_module": "@jupyter-widgets/controls",
|
1045 |
+
"model_name": "HBoxModel",
|
1046 |
+
"model_module_version": "1.5.0",
|
1047 |
+
"state": {
|
1048 |
+
"_dom_classes": [],
|
1049 |
+
"_model_module": "@jupyter-widgets/controls",
|
1050 |
+
"_model_module_version": "1.5.0",
|
1051 |
+
"_model_name": "HBoxModel",
|
1052 |
+
"_view_count": null,
|
1053 |
+
"_view_module": "@jupyter-widgets/controls",
|
1054 |
+
"_view_module_version": "1.5.0",
|
1055 |
+
"_view_name": "HBoxView",
|
1056 |
+
"box_style": "",
|
1057 |
+
"children": [
|
1058 |
+
"IPY_MODEL_40f2cc2506fd49dd9e284c1891312785",
|
1059 |
+
"IPY_MODEL_719e9ba1b98d4170a6acff418ada38fa",
|
1060 |
+
"IPY_MODEL_1e532190fe2b49a08a97211e3f1c60d0"
|
1061 |
+
],
|
1062 |
+
"layout": "IPY_MODEL_e0ac88aa562e4354b15e182164990a79"
|
1063 |
+
}
|
1064 |
+
},
|
1065 |
+
"40f2cc2506fd49dd9e284c1891312785": {
|
1066 |
+
"model_module": "@jupyter-widgets/controls",
|
1067 |
+
"model_name": "HTMLModel",
|
1068 |
+
"model_module_version": "1.5.0",
|
1069 |
+
"state": {
|
1070 |
+
"_dom_classes": [],
|
1071 |
+
"_model_module": "@jupyter-widgets/controls",
|
1072 |
+
"_model_module_version": "1.5.0",
|
1073 |
+
"_model_name": "HTMLModel",
|
1074 |
+
"_view_count": null,
|
1075 |
+
"_view_module": "@jupyter-widgets/controls",
|
1076 |
+
"_view_module_version": "1.5.0",
|
1077 |
+
"_view_name": "HTMLView",
|
1078 |
+
"description": "",
|
1079 |
+
"description_tooltip": null,
|
1080 |
+
"layout": "IPY_MODEL_5e6bd272a50b4734a8a4dd4cb683d4e2",
|
1081 |
+
"placeholder": "",
|
1082 |
+
"style": "IPY_MODEL_9fd8ea0a806e4641ae945dc59baa0505",
|
1083 |
+
"value": "Downloading (…)lve/main/config.json: 100%"
|
1084 |
+
}
|
1085 |
+
},
|
1086 |
+
"719e9ba1b98d4170a6acff418ada38fa": {
|
1087 |
+
"model_module": "@jupyter-widgets/controls",
|
1088 |
+
"model_name": "FloatProgressModel",
|
1089 |
+
"model_module_version": "1.5.0",
|
1090 |
+
"state": {
|
1091 |
+
"_dom_classes": [],
|
1092 |
+
"_model_module": "@jupyter-widgets/controls",
|
1093 |
+
"_model_module_version": "1.5.0",
|
1094 |
+
"_model_name": "FloatProgressModel",
|
1095 |
+
"_view_count": null,
|
1096 |
+
"_view_module": "@jupyter-widgets/controls",
|
1097 |
+
"_view_module_version": "1.5.0",
|
1098 |
+
"_view_name": "ProgressView",
|
1099 |
+
"bar_style": "success",
|
1100 |
+
"description": "",
|
1101 |
+
"description_tooltip": null,
|
1102 |
+
"layout": "IPY_MODEL_941fcfabb72940a59c7fa76e3506385d",
|
1103 |
+
"max": 483,
|
1104 |
+
"min": 0,
|
1105 |
+
"orientation": "horizontal",
|
1106 |
+
"style": "IPY_MODEL_23bc61b5726942169123eca1f60bd883",
|
1107 |
+
"value": 483
|
1108 |
+
}
|
1109 |
+
},
|
1110 |
+
"1e532190fe2b49a08a97211e3f1c60d0": {
|
1111 |
+
"model_module": "@jupyter-widgets/controls",
|
1112 |
+
"model_name": "HTMLModel",
|
1113 |
+
"model_module_version": "1.5.0",
|
1114 |
+
"state": {
|
1115 |
+
"_dom_classes": [],
|
1116 |
+
"_model_module": "@jupyter-widgets/controls",
|
1117 |
+
"_model_module_version": "1.5.0",
|
1118 |
+
"_model_name": "HTMLModel",
|
1119 |
+
"_view_count": null,
|
1120 |
+
"_view_module": "@jupyter-widgets/controls",
|
1121 |
+
"_view_module_version": "1.5.0",
|
1122 |
+
"_view_name": "HTMLView",
|
1123 |
+
"description": "",
|
1124 |
+
"description_tooltip": null,
|
1125 |
+
"layout": "IPY_MODEL_b9ebd383be484f5d8fabafd4a130d6ae",
|
1126 |
+
"placeholder": "",
|
1127 |
+
"style": "IPY_MODEL_afdf7f80c04848fb8978d2634ee86526",
|
1128 |
+
"value": " 483/483 [00:00<00:00, 30.4kB/s]"
|
1129 |
+
}
|
1130 |
+
},
|
1131 |
+
"e0ac88aa562e4354b15e182164990a79": {
|
1132 |
+
"model_module": "@jupyter-widgets/base",
|
1133 |
+
"model_name": "LayoutModel",
|
1134 |
+
"model_module_version": "1.2.0",
|
1135 |
+
"state": {
|
1136 |
+
"_model_module": "@jupyter-widgets/base",
|
1137 |
+
"_model_module_version": "1.2.0",
|
1138 |
+
"_model_name": "LayoutModel",
|
1139 |
+
"_view_count": null,
|
1140 |
+
"_view_module": "@jupyter-widgets/base",
|
1141 |
+
"_view_module_version": "1.2.0",
|
1142 |
+
"_view_name": "LayoutView",
|
1143 |
+
"align_content": null,
|
1144 |
+
"align_items": null,
|
1145 |
+
"align_self": null,
|
1146 |
+
"border": null,
|
1147 |
+
"bottom": null,
|
1148 |
+
"display": null,
|
1149 |
+
"flex": null,
|
1150 |
+
"flex_flow": null,
|
1151 |
+
"grid_area": null,
|
1152 |
+
"grid_auto_columns": null,
|
1153 |
+
"grid_auto_flow": null,
|
1154 |
+
"grid_auto_rows": null,
|
1155 |
+
"grid_column": null,
|
1156 |
+
"grid_gap": null,
|
1157 |
+
"grid_row": null,
|
1158 |
+
"grid_template_areas": null,
|
1159 |
+
"grid_template_columns": null,
|
1160 |
+
"grid_template_rows": null,
|
1161 |
+
"height": null,
|
1162 |
+
"justify_content": null,
|
1163 |
+
"justify_items": null,
|
1164 |
+
"left": null,
|
1165 |
+
"margin": null,
|
1166 |
+
"max_height": null,
|
1167 |
+
"max_width": null,
|
1168 |
+
"min_height": null,
|
1169 |
+
"min_width": null,
|
1170 |
+
"object_fit": null,
|
1171 |
+
"object_position": null,
|
1172 |
+
"order": null,
|
1173 |
+
"overflow": null,
|
1174 |
+
"overflow_x": null,
|
1175 |
+
"overflow_y": null,
|
1176 |
+
"padding": null,
|
1177 |
+
"right": null,
|
1178 |
+
"top": null,
|
1179 |
+
"visibility": null,
|
1180 |
+
"width": null
|
1181 |
+
}
|
1182 |
+
},
|
1183 |
+
"5e6bd272a50b4734a8a4dd4cb683d4e2": {
|
1184 |
+
"model_module": "@jupyter-widgets/base",
|
1185 |
+
"model_name": "LayoutModel",
|
1186 |
+
"model_module_version": "1.2.0",
|
1187 |
+
"state": {
|
1188 |
+
"_model_module": "@jupyter-widgets/base",
|
1189 |
+
"_model_module_version": "1.2.0",
|
1190 |
+
"_model_name": "LayoutModel",
|
1191 |
+
"_view_count": null,
|
1192 |
+
"_view_module": "@jupyter-widgets/base",
|
1193 |
+
"_view_module_version": "1.2.0",
|
1194 |
+
"_view_name": "LayoutView",
|
1195 |
+
"align_content": null,
|
1196 |
+
"align_items": null,
|
1197 |
+
"align_self": null,
|
1198 |
+
"border": null,
|
1199 |
+
"bottom": null,
|
1200 |
+
"display": null,
|
1201 |
+
"flex": null,
|
1202 |
+
"flex_flow": null,
|
1203 |
+
"grid_area": null,
|
1204 |
+
"grid_auto_columns": null,
|
1205 |
+
"grid_auto_flow": null,
|
1206 |
+
"grid_auto_rows": null,
|
1207 |
+
"grid_column": null,
|
1208 |
+
"grid_gap": null,
|
1209 |
+
"grid_row": null,
|
1210 |
+
"grid_template_areas": null,
|
1211 |
+
"grid_template_columns": null,
|
1212 |
+
"grid_template_rows": null,
|
1213 |
+
"height": null,
|
1214 |
+
"justify_content": null,
|
1215 |
+
"justify_items": null,
|
1216 |
+
"left": null,
|
1217 |
+
"margin": null,
|
1218 |
+
"max_height": null,
|
1219 |
+
"max_width": null,
|
1220 |
+
"min_height": null,
|
1221 |
+
"min_width": null,
|
1222 |
+
"object_fit": null,
|
1223 |
+
"object_position": null,
|
1224 |
+
"order": null,
|
1225 |
+
"overflow": null,
|
1226 |
+
"overflow_x": null,
|
1227 |
+
"overflow_y": null,
|
1228 |
+
"padding": null,
|
1229 |
+
"right": null,
|
1230 |
+
"top": null,
|
1231 |
+
"visibility": null,
|
1232 |
+
"width": null
|
1233 |
+
}
|
1234 |
+
},
|
1235 |
+
"9fd8ea0a806e4641ae945dc59baa0505": {
|
1236 |
+
"model_module": "@jupyter-widgets/controls",
|
1237 |
+
"model_name": "DescriptionStyleModel",
|
1238 |
+
"model_module_version": "1.5.0",
|
1239 |
+
"state": {
|
1240 |
+
"_model_module": "@jupyter-widgets/controls",
|
1241 |
+
"_model_module_version": "1.5.0",
|
1242 |
+
"_model_name": "DescriptionStyleModel",
|
1243 |
+
"_view_count": null,
|
1244 |
+
"_view_module": "@jupyter-widgets/base",
|
1245 |
+
"_view_module_version": "1.2.0",
|
1246 |
+
"_view_name": "StyleView",
|
1247 |
+
"description_width": ""
|
1248 |
+
}
|
1249 |
+
},
|
1250 |
+
"941fcfabb72940a59c7fa76e3506385d": {
|
1251 |
+
"model_module": "@jupyter-widgets/base",
|
1252 |
+
"model_name": "LayoutModel",
|
1253 |
+
"model_module_version": "1.2.0",
|
1254 |
+
"state": {
|
1255 |
+
"_model_module": "@jupyter-widgets/base",
|
1256 |
+
"_model_module_version": "1.2.0",
|
1257 |
+
"_model_name": "LayoutModel",
|
1258 |
+
"_view_count": null,
|
1259 |
+
"_view_module": "@jupyter-widgets/base",
|
1260 |
+
"_view_module_version": "1.2.0",
|
1261 |
+
"_view_name": "LayoutView",
|
1262 |
+
"align_content": null,
|
1263 |
+
"align_items": null,
|
1264 |
+
"align_self": null,
|
1265 |
+
"border": null,
|
1266 |
+
"bottom": null,
|
1267 |
+
"display": null,
|
1268 |
+
"flex": null,
|
1269 |
+
"flex_flow": null,
|
1270 |
+
"grid_area": null,
|
1271 |
+
"grid_auto_columns": null,
|
1272 |
+
"grid_auto_flow": null,
|
1273 |
+
"grid_auto_rows": null,
|
1274 |
+
"grid_column": null,
|
1275 |
+
"grid_gap": null,
|
1276 |
+
"grid_row": null,
|
1277 |
+
"grid_template_areas": null,
|
1278 |
+
"grid_template_columns": null,
|
1279 |
+
"grid_template_rows": null,
|
1280 |
+
"height": null,
|
1281 |
+
"justify_content": null,
|
1282 |
+
"justify_items": null,
|
1283 |
+
"left": null,
|
1284 |
+
"margin": null,
|
1285 |
+
"max_height": null,
|
1286 |
+
"max_width": null,
|
1287 |
+
"min_height": null,
|
1288 |
+
"min_width": null,
|
1289 |
+
"object_fit": null,
|
1290 |
+
"object_position": null,
|
1291 |
+
"order": null,
|
1292 |
+
"overflow": null,
|
1293 |
+
"overflow_x": null,
|
1294 |
+
"overflow_y": null,
|
1295 |
+
"padding": null,
|
1296 |
+
"right": null,
|
1297 |
+
"top": null,
|
1298 |
+
"visibility": null,
|
1299 |
+
"width": null
|
1300 |
+
}
|
1301 |
+
},
|
1302 |
+
"23bc61b5726942169123eca1f60bd883": {
|
1303 |
+
"model_module": "@jupyter-widgets/controls",
|
1304 |
+
"model_name": "ProgressStyleModel",
|
1305 |
+
"model_module_version": "1.5.0",
|
1306 |
+
"state": {
|
1307 |
+
"_model_module": "@jupyter-widgets/controls",
|
1308 |
+
"_model_module_version": "1.5.0",
|
1309 |
+
"_model_name": "ProgressStyleModel",
|
1310 |
+
"_view_count": null,
|
1311 |
+
"_view_module": "@jupyter-widgets/base",
|
1312 |
+
"_view_module_version": "1.2.0",
|
1313 |
+
"_view_name": "StyleView",
|
1314 |
+
"bar_color": null,
|
1315 |
+
"description_width": ""
|
1316 |
+
}
|
1317 |
+
},
|
1318 |
+
"b9ebd383be484f5d8fabafd4a130d6ae": {
|
1319 |
+
"model_module": "@jupyter-widgets/base",
|
1320 |
+
"model_name": "LayoutModel",
|
1321 |
+
"model_module_version": "1.2.0",
|
1322 |
+
"state": {
|
1323 |
+
"_model_module": "@jupyter-widgets/base",
|
1324 |
+
"_model_module_version": "1.2.0",
|
1325 |
+
"_model_name": "LayoutModel",
|
1326 |
+
"_view_count": null,
|
1327 |
+
"_view_module": "@jupyter-widgets/base",
|
1328 |
+
"_view_module_version": "1.2.0",
|
1329 |
+
"_view_name": "LayoutView",
|
1330 |
+
"align_content": null,
|
1331 |
+
"align_items": null,
|
1332 |
+
"align_self": null,
|
1333 |
+
"border": null,
|
1334 |
+
"bottom": null,
|
1335 |
+
"display": null,
|
1336 |
+
"flex": null,
|
1337 |
+
"flex_flow": null,
|
1338 |
+
"grid_area": null,
|
1339 |
+
"grid_auto_columns": null,
|
1340 |
+
"grid_auto_flow": null,
|
1341 |
+
"grid_auto_rows": null,
|
1342 |
+
"grid_column": null,
|
1343 |
+
"grid_gap": null,
|
1344 |
+
"grid_row": null,
|
1345 |
+
"grid_template_areas": null,
|
1346 |
+
"grid_template_columns": null,
|
1347 |
+
"grid_template_rows": null,
|
1348 |
+
"height": null,
|
1349 |
+
"justify_content": null,
|
1350 |
+
"justify_items": null,
|
1351 |
+
"left": null,
|
1352 |
+
"margin": null,
|
1353 |
+
"max_height": null,
|
1354 |
+
"max_width": null,
|
1355 |
+
"min_height": null,
|
1356 |
+
"min_width": null,
|
1357 |
+
"object_fit": null,
|
1358 |
+
"object_position": null,
|
1359 |
+
"order": null,
|
1360 |
+
"overflow": null,
|
1361 |
+
"overflow_x": null,
|
1362 |
+
"overflow_y": null,
|
1363 |
+
"padding": null,
|
1364 |
+
"right": null,
|
1365 |
+
"top": null,
|
1366 |
+
"visibility": null,
|
1367 |
+
"width": null
|
1368 |
+
}
|
1369 |
+
},
|
1370 |
+
"afdf7f80c04848fb8978d2634ee86526": {
|
1371 |
+
"model_module": "@jupyter-widgets/controls",
|
1372 |
+
"model_name": "DescriptionStyleModel",
|
1373 |
+
"model_module_version": "1.5.0",
|
1374 |
+
"state": {
|
1375 |
+
"_model_module": "@jupyter-widgets/controls",
|
1376 |
+
"_model_module_version": "1.5.0",
|
1377 |
+
"_model_name": "DescriptionStyleModel",
|
1378 |
+
"_view_count": null,
|
1379 |
+
"_view_module": "@jupyter-widgets/base",
|
1380 |
+
"_view_module_version": "1.2.0",
|
1381 |
+
"_view_name": "StyleView",
|
1382 |
+
"description_width": ""
|
1383 |
+
}
|
1384 |
+
},
|
1385 |
+
"a828e2eb329548568ea23df75056ce46": {
|
1386 |
+
"model_module": "@jupyter-widgets/controls",
|
1387 |
+
"model_name": "HBoxModel",
|
1388 |
+
"model_module_version": "1.5.0",
|
1389 |
+
"state": {
|
1390 |
+
"_dom_classes": [],
|
1391 |
+
"_model_module": "@jupyter-widgets/controls",
|
1392 |
+
"_model_module_version": "1.5.0",
|
1393 |
+
"_model_name": "HBoxModel",
|
1394 |
+
"_view_count": null,
|
1395 |
+
"_view_module": "@jupyter-widgets/controls",
|
1396 |
+
"_view_module_version": "1.5.0",
|
1397 |
+
"_view_name": "HBoxView",
|
1398 |
+
"box_style": "",
|
1399 |
+
"children": [
|
1400 |
+
"IPY_MODEL_94f47a73ba5b402b84717807b4f127d9",
|
1401 |
+
"IPY_MODEL_66f521247f4c4a608e4a79933ca8b499",
|
1402 |
+
"IPY_MODEL_9012d483dc42427189bea7c35c6a9f21"
|
1403 |
+
],
|
1404 |
+
"layout": "IPY_MODEL_342182d835634efd9e8dcc16c753602b"
|
1405 |
+
}
|
1406 |
+
},
|
1407 |
+
"94f47a73ba5b402b84717807b4f127d9": {
|
1408 |
+
"model_module": "@jupyter-widgets/controls",
|
1409 |
+
"model_name": "HTMLModel",
|
1410 |
+
"model_module_version": "1.5.0",
|
1411 |
+
"state": {
|
1412 |
+
"_dom_classes": [],
|
1413 |
+
"_model_module": "@jupyter-widgets/controls",
|
1414 |
+
"_model_module_version": "1.5.0",
|
1415 |
+
"_model_name": "HTMLModel",
|
1416 |
+
"_view_count": null,
|
1417 |
+
"_view_module": "@jupyter-widgets/controls",
|
1418 |
+
"_view_module_version": "1.5.0",
|
1419 |
+
"_view_name": "HTMLView",
|
1420 |
+
"description": "",
|
1421 |
+
"description_tooltip": null,
|
1422 |
+
"layout": "IPY_MODEL_a8c8ad17737448748e212de8bba42b5f",
|
1423 |
+
"placeholder": "",
|
1424 |
+
"style": "IPY_MODEL_e414907cc96e4e3d879a6759124fd8fe",
|
1425 |
+
"value": "Downloading pytorch_model.bin: 100%"
|
1426 |
+
}
|
1427 |
+
},
|
1428 |
+
"66f521247f4c4a608e4a79933ca8b499": {
|
1429 |
+
"model_module": "@jupyter-widgets/controls",
|
1430 |
+
"model_name": "FloatProgressModel",
|
1431 |
+
"model_module_version": "1.5.0",
|
1432 |
+
"state": {
|
1433 |
+
"_dom_classes": [],
|
1434 |
+
"_model_module": "@jupyter-widgets/controls",
|
1435 |
+
"_model_module_version": "1.5.0",
|
1436 |
+
"_model_name": "FloatProgressModel",
|
1437 |
+
"_view_count": null,
|
1438 |
+
"_view_module": "@jupyter-widgets/controls",
|
1439 |
+
"_view_module_version": "1.5.0",
|
1440 |
+
"_view_name": "ProgressView",
|
1441 |
+
"bar_style": "success",
|
1442 |
+
"description": "",
|
1443 |
+
"description_tooltip": null,
|
1444 |
+
"layout": "IPY_MODEL_a464bcc2342841588e7384b4c2f10a42",
|
1445 |
+
"max": 267967963,
|
1446 |
+
"min": 0,
|
1447 |
+
"orientation": "horizontal",
|
1448 |
+
"style": "IPY_MODEL_6cc18dcc7a7d4361a5aac3271d47347a",
|
1449 |
+
"value": 267967963
|
1450 |
+
}
|
1451 |
+
},
|
1452 |
+
"9012d483dc42427189bea7c35c6a9f21": {
|
1453 |
+
"model_module": "@jupyter-widgets/controls",
|
1454 |
+
"model_name": "HTMLModel",
|
1455 |
+
"model_module_version": "1.5.0",
|
1456 |
+
"state": {
|
1457 |
+
"_dom_classes": [],
|
1458 |
+
"_model_module": "@jupyter-widgets/controls",
|
1459 |
+
"_model_module_version": "1.5.0",
|
1460 |
+
"_model_name": "HTMLModel",
|
1461 |
+
"_view_count": null,
|
1462 |
+
"_view_module": "@jupyter-widgets/controls",
|
1463 |
+
"_view_module_version": "1.5.0",
|
1464 |
+
"_view_name": "HTMLView",
|
1465 |
+
"description": "",
|
1466 |
+
"description_tooltip": null,
|
1467 |
+
"layout": "IPY_MODEL_cb8c4e778a994ba7bb57f279614ebfe8",
|
1468 |
+
"placeholder": "",
|
1469 |
+
"style": "IPY_MODEL_739f16b75f3248489495a606ab3650ab",
|
1470 |
+
"value": " 268M/268M [00:00<00:00, 372MB/s]"
|
1471 |
+
}
|
1472 |
+
},
|
1473 |
+
"342182d835634efd9e8dcc16c753602b": {
|
1474 |
+
"model_module": "@jupyter-widgets/base",
|
1475 |
+
"model_name": "LayoutModel",
|
1476 |
+
"model_module_version": "1.2.0",
|
1477 |
+
"state": {
|
1478 |
+
"_model_module": "@jupyter-widgets/base",
|
1479 |
+
"_model_module_version": "1.2.0",
|
1480 |
+
"_model_name": "LayoutModel",
|
1481 |
+
"_view_count": null,
|
1482 |
+
"_view_module": "@jupyter-widgets/base",
|
1483 |
+
"_view_module_version": "1.2.0",
|
1484 |
+
"_view_name": "LayoutView",
|
1485 |
+
"align_content": null,
|
1486 |
+
"align_items": null,
|
1487 |
+
"align_self": null,
|
1488 |
+
"border": null,
|
1489 |
+
"bottom": null,
|
1490 |
+
"display": null,
|
1491 |
+
"flex": null,
|
1492 |
+
"flex_flow": null,
|
1493 |
+
"grid_area": null,
|
1494 |
+
"grid_auto_columns": null,
|
1495 |
+
"grid_auto_flow": null,
|
1496 |
+
"grid_auto_rows": null,
|
1497 |
+
"grid_column": null,
|
1498 |
+
"grid_gap": null,
|
1499 |
+
"grid_row": null,
|
1500 |
+
"grid_template_areas": null,
|
1501 |
+
"grid_template_columns": null,
|
1502 |
+
"grid_template_rows": null,
|
1503 |
+
"height": null,
|
1504 |
+
"justify_content": null,
|
1505 |
+
"justify_items": null,
|
1506 |
+
"left": null,
|
1507 |
+
"margin": null,
|
1508 |
+
"max_height": null,
|
1509 |
+
"max_width": null,
|
1510 |
+
"min_height": null,
|
1511 |
+
"min_width": null,
|
1512 |
+
"object_fit": null,
|
1513 |
+
"object_position": null,
|
1514 |
+
"order": null,
|
1515 |
+
"overflow": null,
|
1516 |
+
"overflow_x": null,
|
1517 |
+
"overflow_y": null,
|
1518 |
+
"padding": null,
|
1519 |
+
"right": null,
|
1520 |
+
"top": null,
|
1521 |
+
"visibility": null,
|
1522 |
+
"width": null
|
1523 |
+
}
|
1524 |
+
},
|
1525 |
+
"a8c8ad17737448748e212de8bba42b5f": {
|
1526 |
+
"model_module": "@jupyter-widgets/base",
|
1527 |
+
"model_name": "LayoutModel",
|
1528 |
+
"model_module_version": "1.2.0",
|
1529 |
+
"state": {
|
1530 |
+
"_model_module": "@jupyter-widgets/base",
|
1531 |
+
"_model_module_version": "1.2.0",
|
1532 |
+
"_model_name": "LayoutModel",
|
1533 |
+
"_view_count": null,
|
1534 |
+
"_view_module": "@jupyter-widgets/base",
|
1535 |
+
"_view_module_version": "1.2.0",
|
1536 |
+
"_view_name": "LayoutView",
|
1537 |
+
"align_content": null,
|
1538 |
+
"align_items": null,
|
1539 |
+
"align_self": null,
|
1540 |
+
"border": null,
|
1541 |
+
"bottom": null,
|
1542 |
+
"display": null,
|
1543 |
+
"flex": null,
|
1544 |
+
"flex_flow": null,
|
1545 |
+
"grid_area": null,
|
1546 |
+
"grid_auto_columns": null,
|
1547 |
+
"grid_auto_flow": null,
|
1548 |
+
"grid_auto_rows": null,
|
1549 |
+
"grid_column": null,
|
1550 |
+
"grid_gap": null,
|
1551 |
+
"grid_row": null,
|
1552 |
+
"grid_template_areas": null,
|
1553 |
+
"grid_template_columns": null,
|
1554 |
+
"grid_template_rows": null,
|
1555 |
+
"height": null,
|
1556 |
+
"justify_content": null,
|
1557 |
+
"justify_items": null,
|
1558 |
+
"left": null,
|
1559 |
+
"margin": null,
|
1560 |
+
"max_height": null,
|
1561 |
+
"max_width": null,
|
1562 |
+
"min_height": null,
|
1563 |
+
"min_width": null,
|
1564 |
+
"object_fit": null,
|
1565 |
+
"object_position": null,
|
1566 |
+
"order": null,
|
1567 |
+
"overflow": null,
|
1568 |
+
"overflow_x": null,
|
1569 |
+
"overflow_y": null,
|
1570 |
+
"padding": null,
|
1571 |
+
"right": null,
|
1572 |
+
"top": null,
|
1573 |
+
"visibility": null,
|
1574 |
+
"width": null
|
1575 |
+
}
|
1576 |
+
},
|
1577 |
+
"e414907cc96e4e3d879a6759124fd8fe": {
|
1578 |
+
"model_module": "@jupyter-widgets/controls",
|
1579 |
+
"model_name": "DescriptionStyleModel",
|
1580 |
+
"model_module_version": "1.5.0",
|
1581 |
+
"state": {
|
1582 |
+
"_model_module": "@jupyter-widgets/controls",
|
1583 |
+
"_model_module_version": "1.5.0",
|
1584 |
+
"_model_name": "DescriptionStyleModel",
|
1585 |
+
"_view_count": null,
|
1586 |
+
"_view_module": "@jupyter-widgets/base",
|
1587 |
+
"_view_module_version": "1.2.0",
|
1588 |
+
"_view_name": "StyleView",
|
1589 |
+
"description_width": ""
|
1590 |
+
}
|
1591 |
+
},
|
1592 |
+
"a464bcc2342841588e7384b4c2f10a42": {
|
1593 |
+
"model_module": "@jupyter-widgets/base",
|
1594 |
+
"model_name": "LayoutModel",
|
1595 |
+
"model_module_version": "1.2.0",
|
1596 |
+
"state": {
|
1597 |
+
"_model_module": "@jupyter-widgets/base",
|
1598 |
+
"_model_module_version": "1.2.0",
|
1599 |
+
"_model_name": "LayoutModel",
|
1600 |
+
"_view_count": null,
|
1601 |
+
"_view_module": "@jupyter-widgets/base",
|
1602 |
+
"_view_module_version": "1.2.0",
|
1603 |
+
"_view_name": "LayoutView",
|
1604 |
+
"align_content": null,
|
1605 |
+
"align_items": null,
|
1606 |
+
"align_self": null,
|
1607 |
+
"border": null,
|
1608 |
+
"bottom": null,
|
1609 |
+
"display": null,
|
1610 |
+
"flex": null,
|
1611 |
+
"flex_flow": null,
|
1612 |
+
"grid_area": null,
|
1613 |
+
"grid_auto_columns": null,
|
1614 |
+
"grid_auto_flow": null,
|
1615 |
+
"grid_auto_rows": null,
|
1616 |
+
"grid_column": null,
|
1617 |
+
"grid_gap": null,
|
1618 |
+
"grid_row": null,
|
1619 |
+
"grid_template_areas": null,
|
1620 |
+
"grid_template_columns": null,
|
1621 |
+
"grid_template_rows": null,
|
1622 |
+
"height": null,
|
1623 |
+
"justify_content": null,
|
1624 |
+
"justify_items": null,
|
1625 |
+
"left": null,
|
1626 |
+
"margin": null,
|
1627 |
+
"max_height": null,
|
1628 |
+
"max_width": null,
|
1629 |
+
"min_height": null,
|
1630 |
+
"min_width": null,
|
1631 |
+
"object_fit": null,
|
1632 |
+
"object_position": null,
|
1633 |
+
"order": null,
|
1634 |
+
"overflow": null,
|
1635 |
+
"overflow_x": null,
|
1636 |
+
"overflow_y": null,
|
1637 |
+
"padding": null,
|
1638 |
+
"right": null,
|
1639 |
+
"top": null,
|
1640 |
+
"visibility": null,
|
1641 |
+
"width": null
|
1642 |
+
}
|
1643 |
+
},
|
1644 |
+
"6cc18dcc7a7d4361a5aac3271d47347a": {
|
1645 |
+
"model_module": "@jupyter-widgets/controls",
|
1646 |
+
"model_name": "ProgressStyleModel",
|
1647 |
+
"model_module_version": "1.5.0",
|
1648 |
+
"state": {
|
1649 |
+
"_model_module": "@jupyter-widgets/controls",
|
1650 |
+
"_model_module_version": "1.5.0",
|
1651 |
+
"_model_name": "ProgressStyleModel",
|
1652 |
+
"_view_count": null,
|
1653 |
+
"_view_module": "@jupyter-widgets/base",
|
1654 |
+
"_view_module_version": "1.2.0",
|
1655 |
+
"_view_name": "StyleView",
|
1656 |
+
"bar_color": null,
|
1657 |
+
"description_width": ""
|
1658 |
+
}
|
1659 |
+
},
|
1660 |
+
"cb8c4e778a994ba7bb57f279614ebfe8": {
|
1661 |
+
"model_module": "@jupyter-widgets/base",
|
1662 |
+
"model_name": "LayoutModel",
|
1663 |
+
"model_module_version": "1.2.0",
|
1664 |
+
"state": {
|
1665 |
+
"_model_module": "@jupyter-widgets/base",
|
1666 |
+
"_model_module_version": "1.2.0",
|
1667 |
+
"_model_name": "LayoutModel",
|
1668 |
+
"_view_count": null,
|
1669 |
+
"_view_module": "@jupyter-widgets/base",
|
1670 |
+
"_view_module_version": "1.2.0",
|
1671 |
+
"_view_name": "LayoutView",
|
1672 |
+
"align_content": null,
|
1673 |
+
"align_items": null,
|
1674 |
+
"align_self": null,
|
1675 |
+
"border": null,
|
1676 |
+
"bottom": null,
|
1677 |
+
"display": null,
|
1678 |
+
"flex": null,
|
1679 |
+
"flex_flow": null,
|
1680 |
+
"grid_area": null,
|
1681 |
+
"grid_auto_columns": null,
|
1682 |
+
"grid_auto_flow": null,
|
1683 |
+
"grid_auto_rows": null,
|
1684 |
+
"grid_column": null,
|
1685 |
+
"grid_gap": null,
|
1686 |
+
"grid_row": null,
|
1687 |
+
"grid_template_areas": null,
|
1688 |
+
"grid_template_columns": null,
|
1689 |
+
"grid_template_rows": null,
|
1690 |
+
"height": null,
|
1691 |
+
"justify_content": null,
|
1692 |
+
"justify_items": null,
|
1693 |
+
"left": null,
|
1694 |
+
"margin": null,
|
1695 |
+
"max_height": null,
|
1696 |
+
"max_width": null,
|
1697 |
+
"min_height": null,
|
1698 |
+
"min_width": null,
|
1699 |
+
"object_fit": null,
|
1700 |
+
"object_position": null,
|
1701 |
+
"order": null,
|
1702 |
+
"overflow": null,
|
1703 |
+
"overflow_x": null,
|
1704 |
+
"overflow_y": null,
|
1705 |
+
"padding": null,
|
1706 |
+
"right": null,
|
1707 |
+
"top": null,
|
1708 |
+
"visibility": null,
|
1709 |
+
"width": null
|
1710 |
+
}
|
1711 |
+
},
|
1712 |
+
"739f16b75f3248489495a606ab3650ab": {
|
1713 |
+
"model_module": "@jupyter-widgets/controls",
|
1714 |
+
"model_name": "DescriptionStyleModel",
|
1715 |
+
"model_module_version": "1.5.0",
|
1716 |
+
"state": {
|
1717 |
+
"_model_module": "@jupyter-widgets/controls",
|
1718 |
+
"_model_module_version": "1.5.0",
|
1719 |
+
"_model_name": "DescriptionStyleModel",
|
1720 |
+
"_view_count": null,
|
1721 |
+
"_view_module": "@jupyter-widgets/base",
|
1722 |
+
"_view_module_version": "1.2.0",
|
1723 |
+
"_view_name": "StyleView",
|
1724 |
+
"description_width": ""
|
1725 |
+
}
|
1726 |
+
}
|
1727 |
+
}
|
1728 |
+
}
|
1729 |
+
},
|
1730 |
+
"cells": [
|
1731 |
+
{
|
1732 |
+
"cell_type": "code",
|
1733 |
+
"source": [
|
1734 |
+
"from pathlib import Path\n",
|
1735 |
+
"from sklearn.model_selection import train_test_split\n",
|
1736 |
+
"import torch\n",
|
1737 |
+
"from torch.utils.data import Dataset\n",
|
1738 |
+
"from transformers import DistilBertTokenizerFast, DistilBertForSequenceClassification\n",
|
1739 |
+
"from transformers import Trainer, TrainingArguments\n",
|
1740 |
+
"from torch.utils.data import DataLoader\n",
|
1741 |
+
"from transformers import AdamW\n",
|
1742 |
+
"import pandas as pd\n",
|
1743 |
+
"from huggingface_hub import notebook_login"
|
1744 |
+
],
|
1745 |
+
"metadata": {
|
1746 |
+
"id": "Bu9ttXsprt9w"
|
1747 |
+
},
|
1748 |
+
"execution_count": null,
|
1749 |
+
"outputs": []
|
1750 |
+
},
|
1751 |
+
{
|
1752 |
+
"cell_type": "code",
|
1753 |
+
"execution_count": null,
|
1754 |
+
"metadata": {
|
1755 |
+
"id": "UCoa8JqwrVXU",
|
1756 |
+
"colab": {
|
1757 |
+
"base_uri": "https://localhost:8080/",
|
1758 |
+
"height": 144,
|
1759 |
+
"referenced_widgets": [
|
1760 |
+
"9972abac7caf4cc6b0d98071fd7b2e05",
|
1761 |
+
"b53fb6f416d8458bb0875cbace688913",
|
1762 |
+
"a25b06ec34a44529bd5bd686a9a381e5",
|
1763 |
+
"52da3fef70074ddf95a3b257dcf4b100",
|
1764 |
+
"932e4324d43346e48c85af3e5d5b45c1",
|
1765 |
+
"13d5e786f6294da2b6e5d90ca06c8593",
|
1766 |
+
"bbfa5943bc1c41dbaf3a2ef89ac8d0b3",
|
1767 |
+
"3ce089610ec446c19db3bae1baa45d7a",
|
1768 |
+
"bcf06ca3212c43e0a5db7e7d4ea01375",
|
1769 |
+
"aab6a478cec84b25a29bc0ed4ee2aaac",
|
1770 |
+
"3e6f987e297b4a2b8f3eb1b12b4b67af",
|
1771 |
+
"3a52fbc3755a4323b749da73142e5871",
|
1772 |
+
"7b2019506d154d118134985ee7e8ea43",
|
1773 |
+
"3a51d4dbd7654b9ab7b69a50605d29e9",
|
1774 |
+
"c5dd0d556c9c486baaedf3ca54cef54a",
|
1775 |
+
"3b40837351f44c0f92e3e5af55da3e21",
|
1776 |
+
"85a7a49bf87c4160b241a878c6b12f81",
|
1777 |
+
"9510c227a23e4d829ad9366b41babae6",
|
1778 |
+
"b78852da0af54675a3a1b65729eed99f",
|
1779 |
+
"5638394766b640cdaf9208a8794636d2",
|
1780 |
+
"67535c820a3b407bb801873d788ba535",
|
1781 |
+
"365db64fb2c847a5a41b5d057d77600c",
|
1782 |
+
"d0334d8257ce422597da3d29ac22cd4f",
|
1783 |
+
"eae4e7789fe54a7b98bfda99d20360bd",
|
1784 |
+
"5f48726592fe446ea43b7bdec668919b",
|
1785 |
+
"3edcc888477a440d81e8b6df174966cd",
|
1786 |
+
"9a23d53c1e7a448282c1aaa36d26c4ec",
|
1787 |
+
"e8e2739386c045078bf2cc3987534a93",
|
1788 |
+
"bb14cd687abb432b8e2a01cd58e7c550",
|
1789 |
+
"c5c6159f813949a3851fb158a992a65c",
|
1790 |
+
"03337be3fcd94f388ae2650078269a55",
|
1791 |
+
"ff28b23c163240dc9b543f340b9d2d52",
|
1792 |
+
"110e8e19d5f242829cc4cafdb9a10cb2",
|
1793 |
+
"ee6313a98fd041c9b755be6b6a94ebff",
|
1794 |
+
"40f2cc2506fd49dd9e284c1891312785",
|
1795 |
+
"719e9ba1b98d4170a6acff418ada38fa",
|
1796 |
+
"1e532190fe2b49a08a97211e3f1c60d0",
|
1797 |
+
"e0ac88aa562e4354b15e182164990a79",
|
1798 |
+
"5e6bd272a50b4734a8a4dd4cb683d4e2",
|
1799 |
+
"9fd8ea0a806e4641ae945dc59baa0505",
|
1800 |
+
"941fcfabb72940a59c7fa76e3506385d",
|
1801 |
+
"23bc61b5726942169123eca1f60bd883",
|
1802 |
+
"b9ebd383be484f5d8fabafd4a130d6ae",
|
1803 |
+
"afdf7f80c04848fb8978d2634ee86526"
|
1804 |
+
]
|
1805 |
+
},
|
1806 |
+
"outputId": "8feba0de-40f9-42eb-b903-68ea33e1e5ee"
|
1807 |
+
},
|
1808 |
+
"outputs": [
|
1809 |
+
{
|
1810 |
+
"output_type": "display_data",
|
1811 |
+
"data": {
|
1812 |
+
"text/plain": [
|
1813 |
+
"Downloading (…)okenizer_config.json: 0%| | 0.00/28.0 [00:00<?, ?B/s]"
|
1814 |
+
],
|
1815 |
+
"application/vnd.jupyter.widget-view+json": {
|
1816 |
+
"version_major": 2,
|
1817 |
+
"version_minor": 0,
|
1818 |
+
"model_id": "9972abac7caf4cc6b0d98071fd7b2e05"
|
1819 |
+
}
|
1820 |
+
},
|
1821 |
+
"metadata": {}
|
1822 |
+
},
|
1823 |
+
{
|
1824 |
+
"output_type": "display_data",
|
1825 |
+
"data": {
|
1826 |
+
"text/plain": [
|
1827 |
+
"Downloading (…)solve/main/vocab.txt: 0%| | 0.00/232k [00:00<?, ?B/s]"
|
1828 |
+
],
|
1829 |
+
"application/vnd.jupyter.widget-view+json": {
|
1830 |
+
"version_major": 2,
|
1831 |
+
"version_minor": 0,
|
1832 |
+
"model_id": "3a52fbc3755a4323b749da73142e5871"
|
1833 |
+
}
|
1834 |
+
},
|
1835 |
+
"metadata": {}
|
1836 |
+
},
|
1837 |
+
{
|
1838 |
+
"output_type": "display_data",
|
1839 |
+
"data": {
|
1840 |
+
"text/plain": [
|
1841 |
+
"Downloading (…)/main/tokenizer.json: 0%| | 0.00/466k [00:00<?, ?B/s]"
|
1842 |
+
],
|
1843 |
+
"application/vnd.jupyter.widget-view+json": {
|
1844 |
+
"version_major": 2,
|
1845 |
+
"version_minor": 0,
|
1846 |
+
"model_id": "d0334d8257ce422597da3d29ac22cd4f"
|
1847 |
+
}
|
1848 |
+
},
|
1849 |
+
"metadata": {}
|
1850 |
+
},
|
1851 |
+
{
|
1852 |
+
"output_type": "display_data",
|
1853 |
+
"data": {
|
1854 |
+
"text/plain": [
|
1855 |
+
"Downloading (…)lve/main/config.json: 0%| | 0.00/483 [00:00<?, ?B/s]"
|
1856 |
+
],
|
1857 |
+
"application/vnd.jupyter.widget-view+json": {
|
1858 |
+
"version_major": 2,
|
1859 |
+
"version_minor": 0,
|
1860 |
+
"model_id": "ee6313a98fd041c9b755be6b6a94ebff"
|
1861 |
+
}
|
1862 |
+
},
|
1863 |
+
"metadata": {}
|
1864 |
+
}
|
1865 |
+
],
|
1866 |
+
"source": [
|
1867 |
+
"df_train = pd.read_csv('train.csv')\n",
|
1868 |
+
"df_test = pd.read_csv('test.csv')\n",
|
1869 |
+
"df_test_labels = pd.read_csv('test_labels.csv')\n",
|
1870 |
+
"\n",
|
1871 |
+
"model_name = \"distilbert-base-uncased\"\n",
|
1872 |
+
"\n",
|
1873 |
+
"def read_file(f):\n",
|
1874 |
+
" texts = f['comment_text'].tolist()\n",
|
1875 |
+
" labels = []\n",
|
1876 |
+
" for i in range(len(f)):\n",
|
1877 |
+
" temp = []\n",
|
1878 |
+
" temp.append(f['toxic'][i])\n",
|
1879 |
+
" temp.append(f['severe_toxic'][i])\n",
|
1880 |
+
" temp.append(f['obscene'][i])\n",
|
1881 |
+
" temp.append(f['threat'][i])\n",
|
1882 |
+
" temp.append(f['insult'][i])\n",
|
1883 |
+
" temp.append(f['identity_hate'][i])\n",
|
1884 |
+
" labels.append(temp)\n",
|
1885 |
+
" return texts, labels\n",
|
1886 |
+
"\n",
|
1887 |
+
"train_texts, train_labels = read_file(df_train)\n",
|
1888 |
+
"test_texts = df_test['comment_text'].tolist()\n",
|
1889 |
+
"test_labels = []\n",
|
1890 |
+
"for i in range(len(df_test_labels)):\n",
|
1891 |
+
" temp = []\n",
|
1892 |
+
" temp.append(df_test_labels['toxic'][i])\n",
|
1893 |
+
" temp.append(df_test_labels['severe_toxic'][i])\n",
|
1894 |
+
" temp.append(df_test_labels['obscene'][i])\n",
|
1895 |
+
" temp.append(df_test_labels['threat'][i])\n",
|
1896 |
+
" temp.append(df_test_labels['insult'][i])\n",
|
1897 |
+
" temp.append(df_test_labels['identity_hate'][i])\n",
|
1898 |
+
" test_labels.append(temp)\n",
|
1899 |
+
"\n",
|
1900 |
+
"train_texts, val_texts, train_labels, val_labels = train_test_split(train_texts, train_labels, test_size=.2)\n",
|
1901 |
+
"\n",
|
1902 |
+
"tokenizer = DistilBertTokenizerFast.from_pretrained(model_name)\n",
|
1903 |
+
"\n",
|
1904 |
+
"ind = 0\n",
|
1905 |
+
"train_encodings = {'input_ids': [], 'attention_mask': []}\n",
|
1906 |
+
"\n",
|
1907 |
+
"for i in range(len(train_texts)//16):\n",
|
1908 |
+
" temp = tokenizer(train_texts[ind:ind+16], truncation=True, padding=True)\n",
|
1909 |
+
" train_encodings['input_ids'] += temp['input_ids']\n",
|
1910 |
+
" train_encodings['attention_mask'] += temp['attention_mask']\n",
|
1911 |
+
" ind += 16\n",
|
1912 |
+
"\n",
|
1913 |
+
"ind = 0\n",
|
1914 |
+
"val_encodings = {'input_ids': [], 'attention_mask': []}\n",
|
1915 |
+
"\n",
|
1916 |
+
"for i in range(len(val_texts)//16):\n",
|
1917 |
+
" temp = tokenizer(val_texts[ind:ind+16], truncation=True, padding=True)\n",
|
1918 |
+
" val_encodings['input_ids'] += temp['input_ids']\n",
|
1919 |
+
" val_encodings['attention_mask'] += temp['attention_mask']\n",
|
1920 |
+
" ind += 16\n",
|
1921 |
+
"\n",
|
1922 |
+
"ind = 0\n",
|
1923 |
+
"test_encodings = {'input_ids': [], 'attention_mask': []}\n",
|
1924 |
+
"\n",
|
1925 |
+
"for i in range(len(test_texts)//16):\n",
|
1926 |
+
" temp = tokenizer(test_texts[ind:ind+16], truncation=True, padding=True)\n",
|
1927 |
+
" test_encodings['input_ids'] += temp['input_ids']\n",
|
1928 |
+
" test_encodings['attention_mask'] += temp['attention_mask']\n",
|
1929 |
+
" ind += 16\n",
|
1930 |
+
"\n",
|
1931 |
+
"while True:\n",
|
1932 |
+
" if len(train_labels) > len(train_encodings):\n",
|
1933 |
+
" train_labels.pop()\n",
|
1934 |
+
" else:\n",
|
1935 |
+
" break\n",
|
1936 |
+
" \n",
|
1937 |
+
"while True:\n",
|
1938 |
+
" if len(val_labels) > len(val_encodings):\n",
|
1939 |
+
" val_labels.pop()\n",
|
1940 |
+
" else:\n",
|
1941 |
+
" break\n",
|
1942 |
+
"\n",
|
1943 |
+
"while True:\n",
|
1944 |
+
" if len(test_labels) > len(test_encodings):\n",
|
1945 |
+
" test_labels.pop()\n",
|
1946 |
+
" else:\n",
|
1947 |
+
" break\n",
|
1948 |
+
"\n",
|
1949 |
+
"class dataset(Dataset):\n",
|
1950 |
+
" def __init__(self, encodings, labels):\n",
|
1951 |
+
" self.encodings = encodings\n",
|
1952 |
+
" self.labels = labels\n",
|
1953 |
+
" \n",
|
1954 |
+
" def __getitem__(self, idx):\n",
|
1955 |
+
" item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}\n",
|
1956 |
+
" item['labels'] = torch.tensor(self.labels[idx])\n",
|
1957 |
+
" return item\n",
|
1958 |
+
" \n",
|
1959 |
+
" def __len__(self):\n",
|
1960 |
+
" return(len(self.labels))\n",
|
1961 |
+
"\n",
|
1962 |
+
"train_dataset_list = [[], [], [], [], [], []]\n",
|
1963 |
+
"for i in train_labels:\n",
|
1964 |
+
" for j in range(6):\n",
|
1965 |
+
" train_dataset_list[j].append(i[j])\n",
|
1966 |
+
" \n",
|
1967 |
+
"val_dataset_list = [[], [], [], [], [], []]\n",
|
1968 |
+
"for i in val_labels:\n",
|
1969 |
+
" for j in range(6):\n",
|
1970 |
+
" val_dataset_list[j].append(i[j])\n",
|
1971 |
+
"\n",
|
1972 |
+
"train_dataset_0 = dataset(train_encodings, train_dataset_list[0])\n",
|
1973 |
+
"train_dataset_1 = dataset(train_encodings, train_dataset_list[1])\n",
|
1974 |
+
"train_dataset_2 = dataset(train_encodings, train_dataset_list[2])\n",
|
1975 |
+
"train_dataset_3 = dataset(train_encodings, train_dataset_list[3])\n",
|
1976 |
+
"train_dataset_4 = dataset(train_encodings, train_dataset_list[4])\n",
|
1977 |
+
"train_dataset_5 = dataset(train_encodings, train_dataset_list[5])\n",
|
1978 |
+
"\n",
|
1979 |
+
"val_dataset_0 = dataset(val_encodings, val_dataset_list[0])\n",
|
1980 |
+
"val_dataset_1 = dataset(val_encodings, val_dataset_list[1])\n",
|
1981 |
+
"val_dataset_2 = dataset(val_encodings, val_dataset_list[2])\n",
|
1982 |
+
"val_dataset_3 = dataset(val_encodings, val_dataset_list[3])\n",
|
1983 |
+
"val_dataset_4 = dataset(val_encodings, val_dataset_list[4])\n",
|
1984 |
+
"val_dataset_5 = dataset(val_encodings, val_dataset_list[5])"
|
1985 |
+
]
|
1986 |
+
},
|
1987 |
+
{
|
1988 |
+
"cell_type": "code",
|
1989 |
+
"source": [
|
1990 |
+
"# save tokenizer\n",
|
1991 |
+
"tokenizer.save_pretrained(\"tokenizer.json\")"
|
1992 |
+
],
|
1993 |
+
"metadata": {
|
1994 |
+
"colab": {
|
1995 |
+
"base_uri": "https://localhost:8080/"
|
1996 |
+
},
|
1997 |
+
"id": "dc8jvgisXLhE",
|
1998 |
+
"outputId": "876334df-a494-41fd-bd50-70cdab7936ad"
|
1999 |
+
},
|
2000 |
+
"execution_count": null,
|
2001 |
+
"outputs": [
|
2002 |
+
{
|
2003 |
+
"output_type": "execute_result",
|
2004 |
+
"data": {
|
2005 |
+
"text/plain": [
|
2006 |
+
"('tokenizer.json/tokenizer_config.json',\n",
|
2007 |
+
" 'tokenizer.json/special_tokens_map.json',\n",
|
2008 |
+
" 'tokenizer.json/vocab.txt',\n",
|
2009 |
+
" 'tokenizer.json/added_tokens.json',\n",
|
2010 |
+
" 'tokenizer.json/tokenizer.json')"
|
2011 |
+
]
|
2012 |
+
},
|
2013 |
+
"metadata": {},
|
2014 |
+
"execution_count": 9
|
2015 |
+
}
|
2016 |
+
]
|
2017 |
+
},
|
2018 |
+
{
|
2019 |
+
"cell_type": "code",
|
2020 |
+
"source": [
|
2021 |
+
"# training_args = TrainingArguments(output_dir='Rathgeberj/milestone3_fine_tuned', \n",
|
2022 |
+
"# push_to_hub=True, \n",
|
2023 |
+
"# num_train_epochs=2, \n",
|
2024 |
+
"# per_device_train_batch_size=16, \n",
|
2025 |
+
"# per_device_eval_batch_size=64, \n",
|
2026 |
+
"# warmup_steps=500, learning_rate=5e-5, \n",
|
2027 |
+
"# weight_decay=.01, logging_dir='./logs', \n",
|
2028 |
+
"# logging_steps=10)\n",
|
2029 |
+
"# /Users/jeffreyrathgeber\n",
|
2030 |
+
"\n",
|
2031 |
+
"training_args = TrainingArguments(output_dir='results', \n",
|
2032 |
+
" num_train_epochs=2, \n",
|
2033 |
+
" per_device_train_batch_size=16, \n",
|
2034 |
+
" per_device_eval_batch_size=64, \n",
|
2035 |
+
" warmup_steps=500, learning_rate=5e-5, \n",
|
2036 |
+
" weight_decay=.01, logging_dir='./logs', \n",
|
2037 |
+
" logging_steps=10)\n",
|
2038 |
+
"\n",
|
2039 |
+
"model_0 = DistilBertForSequenceClassification.from_pretrained(model_name)\n",
|
2040 |
+
"model_1 = DistilBertForSequenceClassification.from_pretrained(model_name)\n",
|
2041 |
+
"model_2 = DistilBertForSequenceClassification.from_pretrained(model_name)\n",
|
2042 |
+
"model_3 = DistilBertForSequenceClassification.from_pretrained(model_name)\n",
|
2043 |
+
"model_4 = DistilBertForSequenceClassification.from_pretrained(model_name)\n",
|
2044 |
+
"model_5 = DistilBertForSequenceClassification.from_pretrained(model_name)"
|
2045 |
+
],
|
2046 |
+
"metadata": {
|
2047 |
+
"colab": {
|
2048 |
+
"base_uri": "https://localhost:8080/",
|
2049 |
+
"height": 563,
|
2050 |
+
"referenced_widgets": [
|
2051 |
+
"a828e2eb329548568ea23df75056ce46",
|
2052 |
+
"94f47a73ba5b402b84717807b4f127d9",
|
2053 |
+
"66f521247f4c4a608e4a79933ca8b499",
|
2054 |
+
"9012d483dc42427189bea7c35c6a9f21",
|
2055 |
+
"342182d835634efd9e8dcc16c753602b",
|
2056 |
+
"a8c8ad17737448748e212de8bba42b5f",
|
2057 |
+
"e414907cc96e4e3d879a6759124fd8fe",
|
2058 |
+
"a464bcc2342841588e7384b4c2f10a42",
|
2059 |
+
"6cc18dcc7a7d4361a5aac3271d47347a",
|
2060 |
+
"cb8c4e778a994ba7bb57f279614ebfe8",
|
2061 |
+
"739f16b75f3248489495a606ab3650ab"
|
2062 |
+
]
|
2063 |
+
},
|
2064 |
+
"id": "1FrCJtT23YVX",
|
2065 |
+
"outputId": "5311555b-7789-4bd5-8931-4abc9b70360e"
|
2066 |
+
},
|
2067 |
+
"execution_count": null,
|
2068 |
+
"outputs": [
|
2069 |
+
{
|
2070 |
+
"output_type": "display_data",
|
2071 |
+
"data": {
|
2072 |
+
"text/plain": [
|
2073 |
+
"Downloading pytorch_model.bin: 0%| | 0.00/268M [00:00<?, ?B/s]"
|
2074 |
+
],
|
2075 |
+
"application/vnd.jupyter.widget-view+json": {
|
2076 |
+
"version_major": 2,
|
2077 |
+
"version_minor": 0,
|
2078 |
+
"model_id": "a828e2eb329548568ea23df75056ce46"
|
2079 |
+
}
|
2080 |
+
},
|
2081 |
+
"metadata": {}
|
2082 |
+
},
|
2083 |
+
{
|
2084 |
+
"output_type": "stream",
|
2085 |
+
"name": "stderr",
|
2086 |
+
"text": [
|
2087 |
+
"Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertForSequenceClassification: ['vocab_transform.weight', 'vocab_layer_norm.weight', 'vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.bias', 'vocab_projector.weight']\n",
|
2088 |
+
"- This IS expected if you are initializing DistilBertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
2089 |
+
"- This IS NOT expected if you are initializing DistilBertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
2090 |
+
"Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['classifier.weight', 'pre_classifier.bias', 'classifier.bias', 'pre_classifier.weight']\n",
|
2091 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n",
|
2092 |
+
"Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertForSequenceClassification: ['vocab_transform.weight', 'vocab_layer_norm.weight', 'vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.bias', 'vocab_projector.weight']\n",
|
2093 |
+
"- This IS expected if you are initializing DistilBertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
2094 |
+
"- This IS NOT expected if you are initializing DistilBertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
2095 |
+
"Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['classifier.weight', 'pre_classifier.bias', 'classifier.bias', 'pre_classifier.weight']\n",
|
2096 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n",
|
2097 |
+
"Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertForSequenceClassification: ['vocab_transform.weight', 'vocab_layer_norm.weight', 'vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.bias', 'vocab_projector.weight']\n",
|
2098 |
+
"- This IS expected if you are initializing DistilBertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
2099 |
+
"- This IS NOT expected if you are initializing DistilBertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
2100 |
+
"Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['classifier.weight', 'pre_classifier.bias', 'classifier.bias', 'pre_classifier.weight']\n",
|
2101 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n",
|
2102 |
+
"Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertForSequenceClassification: ['vocab_transform.weight', 'vocab_layer_norm.weight', 'vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.bias', 'vocab_projector.weight']\n",
|
2103 |
+
"- This IS expected if you are initializing DistilBertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
2104 |
+
"- This IS NOT expected if you are initializing DistilBertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
2105 |
+
"Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['classifier.weight', 'pre_classifier.bias', 'classifier.bias', 'pre_classifier.weight']\n",
|
2106 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n",
|
2107 |
+
"Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertForSequenceClassification: ['vocab_transform.weight', 'vocab_layer_norm.weight', 'vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.bias', 'vocab_projector.weight']\n",
|
2108 |
+
"- This IS expected if you are initializing DistilBertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
2109 |
+
"- This IS NOT expected if you are initializing DistilBertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
2110 |
+
"Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['classifier.weight', 'pre_classifier.bias', 'classifier.bias', 'pre_classifier.weight']\n",
|
2111 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n",
|
2112 |
+
"Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertForSequenceClassification: ['vocab_transform.weight', 'vocab_layer_norm.weight', 'vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.bias', 'vocab_projector.weight']\n",
|
2113 |
+
"- This IS expected if you are initializing DistilBertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
2114 |
+
"- This IS NOT expected if you are initializing DistilBertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
2115 |
+
"Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['classifier.weight', 'pre_classifier.bias', 'classifier.bias', 'pre_classifier.weight']\n",
|
2116 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
2117 |
+
]
|
2118 |
+
}
|
2119 |
+
]
|
2120 |
+
},
|
2121 |
+
{
|
2122 |
+
"cell_type": "code",
|
2123 |
+
"source": [
|
2124 |
+
"trainer_0 = Trainer(model=model_0, args=training_args, train_dataset=train_dataset_0, eval_dataset=val_dataset_0)\n",
|
2125 |
+
"trainer_0.train()\n",
|
2126 |
+
"trainer_0.save_model(output_dir='NEW')"
|
2127 |
+
],
|
2128 |
+
"metadata": {
|
2129 |
+
"colab": {
|
2130 |
+
"base_uri": "https://localhost:8080/",
|
2131 |
+
"height": 127
|
2132 |
+
},
|
2133 |
+
"id": "_iaP4g715FZl",
|
2134 |
+
"outputId": "feab2bf7-e30a-4282-8f34-4d45bf2baf55"
|
2135 |
+
},
|
2136 |
+
"execution_count": null,
|
2137 |
+
"outputs": [
|
2138 |
+
{
|
2139 |
+
"output_type": "stream",
|
2140 |
+
"name": "stderr",
|
2141 |
+
"text": [
|
2142 |
+
"/usr/local/lib/python3.9/dist-packages/transformers/optimization.py:391: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n",
|
2143 |
+
" warnings.warn(\n"
|
2144 |
+
]
|
2145 |
+
},
|
2146 |
+
{
|
2147 |
+
"output_type": "display_data",
|
2148 |
+
"data": {
|
2149 |
+
"text/plain": [
|
2150 |
+
"<IPython.core.display.HTML object>"
|
2151 |
+
],
|
2152 |
+
"text/html": [
|
2153 |
+
"\n",
|
2154 |
+
" <div>\n",
|
2155 |
+
" \n",
|
2156 |
+
" <progress value='2' max='2' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
2157 |
+
" [2/2 00:04, Epoch 2/2]\n",
|
2158 |
+
" </div>\n",
|
2159 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
2160 |
+
" <thead>\n",
|
2161 |
+
" <tr style=\"text-align: left;\">\n",
|
2162 |
+
" <th>Step</th>\n",
|
2163 |
+
" <th>Training Loss</th>\n",
|
2164 |
+
" </tr>\n",
|
2165 |
+
" </thead>\n",
|
2166 |
+
" <tbody>\n",
|
2167 |
+
" </tbody>\n",
|
2168 |
+
"</table><p>"
|
2169 |
+
]
|
2170 |
+
},
|
2171 |
+
"metadata": {}
|
2172 |
+
}
|
2173 |
+
]
|
2174 |
+
},
|
2175 |
+
{
|
2176 |
+
"cell_type": "code",
|
2177 |
+
"source": [
|
2178 |
+
"trainer_1 = Trainer(model=model_1, args=training_args, train_dataset=train_dataset_1, eval_dataset=val_dataset_1)\n",
|
2179 |
+
"trainer_1.train()\n",
|
2180 |
+
"trainer_1.save_model(output_dir='UPDATED_1')"
|
2181 |
+
],
|
2182 |
+
"metadata": {
|
2183 |
+
"colab": {
|
2184 |
+
"base_uri": "https://localhost:8080/",
|
2185 |
+
"height": 74
|
2186 |
+
},
|
2187 |
+
"id": "q6hRKNNgGrVB",
|
2188 |
+
"outputId": "8dddc83c-4292-424c-8534-61d8125ecac5"
|
2189 |
+
},
|
2190 |
+
"execution_count": null,
|
2191 |
+
"outputs": [
|
2192 |
+
{
|
2193 |
+
"output_type": "display_data",
|
2194 |
+
"data": {
|
2195 |
+
"text/plain": [
|
2196 |
+
"<IPython.core.display.HTML object>"
|
2197 |
+
],
|
2198 |
+
"text/html": [
|
2199 |
+
"\n",
|
2200 |
+
" <div>\n",
|
2201 |
+
" \n",
|
2202 |
+
" <progress value='2' max='2' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
2203 |
+
" [2/2 00:09, Epoch 2/2]\n",
|
2204 |
+
" </div>\n",
|
2205 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
2206 |
+
" <thead>\n",
|
2207 |
+
" <tr style=\"text-align: left;\">\n",
|
2208 |
+
" <th>Step</th>\n",
|
2209 |
+
" <th>Training Loss</th>\n",
|
2210 |
+
" </tr>\n",
|
2211 |
+
" </thead>\n",
|
2212 |
+
" <tbody>\n",
|
2213 |
+
" </tbody>\n",
|
2214 |
+
"</table><p>"
|
2215 |
+
]
|
2216 |
+
},
|
2217 |
+
"metadata": {}
|
2218 |
+
}
|
2219 |
+
]
|
2220 |
+
},
|
2221 |
+
{
|
2222 |
+
"cell_type": "code",
|
2223 |
+
"source": [
|
2224 |
+
"trainer_2 = Trainer(model=model_2, args=training_args, train_dataset=train_dataset_2, eval_dataset=val_dataset_2)\n",
|
2225 |
+
"trainer_2.train()\n",
|
2226 |
+
"trainer_2.save_model(output_dir='UPDATED_2')\n"
|
2227 |
+
],
|
2228 |
+
"metadata": {
|
2229 |
+
"colab": {
|
2230 |
+
"base_uri": "https://localhost:8080/",
|
2231 |
+
"height": 74
|
2232 |
+
},
|
2233 |
+
"id": "UwuqSkNdGrgk",
|
2234 |
+
"outputId": "ecc6c398-36d1-40c3-a7ca-0ad99cf0369e"
|
2235 |
+
},
|
2236 |
+
"execution_count": null,
|
2237 |
+
"outputs": [
|
2238 |
+
{
|
2239 |
+
"output_type": "display_data",
|
2240 |
+
"data": {
|
2241 |
+
"text/plain": [
|
2242 |
+
"<IPython.core.display.HTML object>"
|
2243 |
+
],
|
2244 |
+
"text/html": [
|
2245 |
+
"\n",
|
2246 |
+
" <div>\n",
|
2247 |
+
" \n",
|
2248 |
+
" <progress value='2' max='2' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
2249 |
+
" [2/2 00:03, Epoch 2/2]\n",
|
2250 |
+
" </div>\n",
|
2251 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
2252 |
+
" <thead>\n",
|
2253 |
+
" <tr style=\"text-align: left;\">\n",
|
2254 |
+
" <th>Step</th>\n",
|
2255 |
+
" <th>Training Loss</th>\n",
|
2256 |
+
" </tr>\n",
|
2257 |
+
" </thead>\n",
|
2258 |
+
" <tbody>\n",
|
2259 |
+
" </tbody>\n",
|
2260 |
+
"</table><p>"
|
2261 |
+
]
|
2262 |
+
},
|
2263 |
+
"metadata": {}
|
2264 |
+
}
|
2265 |
+
]
|
2266 |
+
},
|
2267 |
+
{
|
2268 |
+
"cell_type": "code",
|
2269 |
+
"source": [
|
2270 |
+
"trainer_3 = Trainer(model=model_3, args=training_args, train_dataset=train_dataset_3, eval_dataset=val_dataset_3)\n",
|
2271 |
+
"trainer_3.train()\n",
|
2272 |
+
"trainer_3.save_model(output_dir='UPDATED_3')"
|
2273 |
+
],
|
2274 |
+
"metadata": {
|
2275 |
+
"colab": {
|
2276 |
+
"base_uri": "https://localhost:8080/",
|
2277 |
+
"height": 74
|
2278 |
+
},
|
2279 |
+
"id": "TbysKTvgGrqJ",
|
2280 |
+
"outputId": "e8f04274-92f8-439e-b567-75d589eaaa1b"
|
2281 |
+
},
|
2282 |
+
"execution_count": null,
|
2283 |
+
"outputs": [
|
2284 |
+
{
|
2285 |
+
"output_type": "display_data",
|
2286 |
+
"data": {
|
2287 |
+
"text/plain": [
|
2288 |
+
"<IPython.core.display.HTML object>"
|
2289 |
+
],
|
2290 |
+
"text/html": [
|
2291 |
+
"\n",
|
2292 |
+
" <div>\n",
|
2293 |
+
" \n",
|
2294 |
+
" <progress value='2' max='2' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
2295 |
+
" [2/2 00:03, Epoch 2/2]\n",
|
2296 |
+
" </div>\n",
|
2297 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
2298 |
+
" <thead>\n",
|
2299 |
+
" <tr style=\"text-align: left;\">\n",
|
2300 |
+
" <th>Step</th>\n",
|
2301 |
+
" <th>Training Loss</th>\n",
|
2302 |
+
" </tr>\n",
|
2303 |
+
" </thead>\n",
|
2304 |
+
" <tbody>\n",
|
2305 |
+
" </tbody>\n",
|
2306 |
+
"</table><p>"
|
2307 |
+
]
|
2308 |
+
},
|
2309 |
+
"metadata": {}
|
2310 |
+
}
|
2311 |
+
]
|
2312 |
+
},
|
2313 |
+
{
|
2314 |
+
"cell_type": "code",
|
2315 |
+
"source": [
|
2316 |
+
"trainer_4 = Trainer(model=model_4, args=training_args, train_dataset=train_dataset_4, eval_dataset=val_dataset_4)\n",
|
2317 |
+
"trainer_4.train()\n",
|
2318 |
+
"trainer_4.save_model(output_dir='UPDATED_4')"
|
2319 |
+
],
|
2320 |
+
"metadata": {
|
2321 |
+
"id": "VTJ-4cENGr05",
|
2322 |
+
"colab": {
|
2323 |
+
"base_uri": "https://localhost:8080/",
|
2324 |
+
"height": 74
|
2325 |
+
},
|
2326 |
+
"outputId": "54cc3a64-c511-4484-c09f-f8ffe2ff65d7"
|
2327 |
+
},
|
2328 |
+
"execution_count": null,
|
2329 |
+
"outputs": [
|
2330 |
+
{
|
2331 |
+
"output_type": "display_data",
|
2332 |
+
"data": {
|
2333 |
+
"text/plain": [
|
2334 |
+
"<IPython.core.display.HTML object>"
|
2335 |
+
],
|
2336 |
+
"text/html": [
|
2337 |
+
"\n",
|
2338 |
+
" <div>\n",
|
2339 |
+
" \n",
|
2340 |
+
" <progress value='2' max='2' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
2341 |
+
" [2/2 00:03, Epoch 2/2]\n",
|
2342 |
+
" </div>\n",
|
2343 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
2344 |
+
" <thead>\n",
|
2345 |
+
" <tr style=\"text-align: left;\">\n",
|
2346 |
+
" <th>Step</th>\n",
|
2347 |
+
" <th>Training Loss</th>\n",
|
2348 |
+
" </tr>\n",
|
2349 |
+
" </thead>\n",
|
2350 |
+
" <tbody>\n",
|
2351 |
+
" </tbody>\n",
|
2352 |
+
"</table><p>"
|
2353 |
+
]
|
2354 |
+
},
|
2355 |
+
"metadata": {}
|
2356 |
+
}
|
2357 |
+
]
|
2358 |
+
},
|
2359 |
+
{
|
2360 |
+
"cell_type": "code",
|
2361 |
+
"source": [
|
2362 |
+
"trainer_5 = Trainer(model=model_5, args=training_args, train_dataset=train_dataset_5, eval_dataset=val_dataset_5)\n",
|
2363 |
+
"trainer_5.train()\n",
|
2364 |
+
"trainer_5.save_model(output_dir='UPDATED_5')"
|
2365 |
+
],
|
2366 |
+
"metadata": {
|
2367 |
+
"id": "mgIWDFQ2HtXL",
|
2368 |
+
"colab": {
|
2369 |
+
"base_uri": "https://localhost:8080/",
|
2370 |
+
"height": 74
|
2371 |
+
},
|
2372 |
+
"outputId": "7cddb662-1c2f-4923-c747-866ec6f3297d"
|
2373 |
+
},
|
2374 |
+
"execution_count": null,
|
2375 |
+
"outputs": [
|
2376 |
+
{
|
2377 |
+
"output_type": "display_data",
|
2378 |
+
"data": {
|
2379 |
+
"text/plain": [
|
2380 |
+
"<IPython.core.display.HTML object>"
|
2381 |
+
],
|
2382 |
+
"text/html": [
|
2383 |
+
"\n",
|
2384 |
+
" <div>\n",
|
2385 |
+
" \n",
|
2386 |
+
" <progress value='2' max='2' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
2387 |
+
" [2/2 00:03, Epoch 2/2]\n",
|
2388 |
+
" </div>\n",
|
2389 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
2390 |
+
" <thead>\n",
|
2391 |
+
" <tr style=\"text-align: left;\">\n",
|
2392 |
+
" <th>Step</th>\n",
|
2393 |
+
" <th>Training Loss</th>\n",
|
2394 |
+
" </tr>\n",
|
2395 |
+
" </thead>\n",
|
2396 |
+
" <tbody>\n",
|
2397 |
+
" </tbody>\n",
|
2398 |
+
"</table><p>"
|
2399 |
+
]
|
2400 |
+
},
|
2401 |
+
"metadata": {}
|
2402 |
+
}
|
2403 |
+
]
|
2404 |
+
}
|
2405 |
+
]
|
2406 |
+
}
|
aiprojecttest.py
DELETED
@@ -1,215 +0,0 @@
|
|
1 |
-
# -*- coding: utf-8 -*-
|
2 |
-
"""AiProjectTest.ipynb
|
3 |
-
|
4 |
-
Automatically generated by Colaboratory.
|
5 |
-
|
6 |
-
Original file is located at
|
7 |
-
https://colab.research.google.com/drive/1E4AHYbuRi_FbOMhQntdAMMZMY14hWh2e
|
8 |
-
"""
|
9 |
-
|
10 |
-
from pathlib import Path
|
11 |
-
from sklearn.model_selection import train_test_split
|
12 |
-
import torch
|
13 |
-
from torch.utils.data import Dataset
|
14 |
-
from transformers import DistilBertTokenizerFast, DistilBertForSequenceClassification
|
15 |
-
from transformers import Trainer, TrainingArguments
|
16 |
-
from torch.utils.data import DataLoader
|
17 |
-
from transformers import AdamW
|
18 |
-
import pandas as pd
|
19 |
-
|
20 |
-
df_train = pd.read_csv('train.csv')
|
21 |
-
df_test = pd.read_csv('test.csv')
|
22 |
-
df_test_labels = pd.read_csv('test_labels.csv')
|
23 |
-
|
24 |
-
model_name = "distilbert-base-uncased"
|
25 |
-
|
26 |
-
def read_file(f):
|
27 |
-
texts = f['comment_text'].tolist()
|
28 |
-
labels = []
|
29 |
-
for i in range(len(f)):
|
30 |
-
temp = []
|
31 |
-
temp.append(f['toxic'][i])
|
32 |
-
temp.append(f['severe_toxic'][i])
|
33 |
-
temp.append(f['obscene'][i])
|
34 |
-
temp.append(f['threat'][i])
|
35 |
-
temp.append(f['insult'][i])
|
36 |
-
temp.append(f['identity_hate'][i])
|
37 |
-
labels.append(temp)
|
38 |
-
return texts, labels
|
39 |
-
|
40 |
-
train_texts, train_labels = read_file(df_train)
|
41 |
-
test_texts = df_test['comment_text'].tolist()
|
42 |
-
test_labels = []
|
43 |
-
for i in range(len(df_test_labels)):
|
44 |
-
temp = []
|
45 |
-
temp.append(df_test_labels['toxic'][i])
|
46 |
-
temp.append(df_test_labels['severe_toxic'][i])
|
47 |
-
temp.append(df_test_labels['obscene'][i])
|
48 |
-
temp.append(df_test_labels['threat'][i])
|
49 |
-
temp.append(df_test_labels['insult'][i])
|
50 |
-
temp.append(df_test_labels['identity_hate'][i])
|
51 |
-
test_labels.append(temp)
|
52 |
-
|
53 |
-
train_texts, val_texts, train_labels, val_labels = train_test_split(train_texts, train_labels, test_size=.2)
|
54 |
-
|
55 |
-
tokenizer = DistilBertTokenizerFast.from_pretrained(model_name)
|
56 |
-
|
57 |
-
ind = 0
|
58 |
-
train_encodings = {'input_ids': [], 'attention_mask': []}
|
59 |
-
|
60 |
-
for i in range(len(train_texts)//16):
|
61 |
-
temp = tokenizer(train_texts[ind:ind+16], truncation=True, padding=True)
|
62 |
-
train_encodings['input_ids'] += temp['input_ids']
|
63 |
-
train_encodings['attention_mask'] += temp['attention_mask']
|
64 |
-
ind += 16
|
65 |
-
|
66 |
-
ind = 0
|
67 |
-
val_encodings = {'input_ids': [], 'attention_mask': []}
|
68 |
-
|
69 |
-
for i in range(len(val_texts)//16):
|
70 |
-
temp = tokenizer(val_texts[ind:ind+16], truncation=True, padding=True)
|
71 |
-
val_encodings['input_ids'] += temp['input_ids']
|
72 |
-
val_encodings['attention_mask'] += temp['attention_mask']
|
73 |
-
ind += 16
|
74 |
-
|
75 |
-
ind = 0
|
76 |
-
test_encodings = {'input_ids': [], 'attention_mask': []}
|
77 |
-
|
78 |
-
for i in range(len(test_texts)//16):
|
79 |
-
temp = tokenizer(test_texts[ind:ind+16], truncation=True, padding=True)
|
80 |
-
test_encodings['input_ids'] += temp['input_ids']
|
81 |
-
test_encodings['attention_mask'] += temp['attention_mask']
|
82 |
-
ind += 16
|
83 |
-
|
84 |
-
while True:
|
85 |
-
if len(train_labels) > len(train_encodings):
|
86 |
-
train_labels.pop()
|
87 |
-
else:
|
88 |
-
break
|
89 |
-
|
90 |
-
while True:
|
91 |
-
if len(val_labels) > len(val_encodings):
|
92 |
-
val_labels.pop()
|
93 |
-
else:
|
94 |
-
break
|
95 |
-
|
96 |
-
while True:
|
97 |
-
if len(test_labels) > len(test_encodings):
|
98 |
-
test_labels.pop()
|
99 |
-
else:
|
100 |
-
break
|
101 |
-
|
102 |
-
class dataset(Dataset):
|
103 |
-
def __init__(self, encodings, labels):
|
104 |
-
self.encodings = encodings
|
105 |
-
self.labels = labels
|
106 |
-
|
107 |
-
def __getitem__(self, idx):
|
108 |
-
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
|
109 |
-
item['labels'] = torch.tensor(self.labels[idx])
|
110 |
-
return item
|
111 |
-
|
112 |
-
def __len__(self):
|
113 |
-
return(len(self.labels))
|
114 |
-
|
115 |
-
train_dataset_list = [[], [], [], [], [], []]
|
116 |
-
for i in train_labels:
|
117 |
-
for j in range(6):
|
118 |
-
train_dataset_list[j].append(i[j])
|
119 |
-
|
120 |
-
val_dataset_list = [[], [], [], [], [], []]
|
121 |
-
for i in val_labels:
|
122 |
-
for j in range(6):
|
123 |
-
val_dataset_list[j].append(i[j])
|
124 |
-
|
125 |
-
train_dataset_0 = dataset(train_encodings, train_dataset_list[0])
|
126 |
-
train_dataset_1 = dataset(train_encodings, train_dataset_list[1])
|
127 |
-
train_dataset_2 = dataset(train_encodings, train_dataset_list[2])
|
128 |
-
train_dataset_3 = dataset(train_encodings, train_dataset_list[3])
|
129 |
-
train_dataset_4 = dataset(train_encodings, train_dataset_list[4])
|
130 |
-
train_dataset_5 = dataset(train_encodings, train_dataset_list[5])
|
131 |
-
|
132 |
-
val_dataset_0 = dataset(val_encodings, val_dataset_list[0])
|
133 |
-
val_dataset_1 = dataset(val_encodings, val_dataset_list[1])
|
134 |
-
val_dataset_2 = dataset(val_encodings, val_dataset_list[2])
|
135 |
-
val_dataset_3 = dataset(val_encodings, val_dataset_list[3])
|
136 |
-
val_dataset_4 = dataset(val_encodings, val_dataset_list[4])
|
137 |
-
val_dataset_5 = dataset(val_encodings, val_dataset_list[5])
|
138 |
-
|
139 |
-
training_args = TrainingArguments(output_dir='./results',
|
140 |
-
num_train_epochs=2,
|
141 |
-
per_device_train_batch_size=16,
|
142 |
-
per_device_eval_batch_size=64,
|
143 |
-
warmup_steps=500, learning_rate=5e-5,
|
144 |
-
weight_decay=.01, logging_dir='./logs',
|
145 |
-
logging_steps=10)
|
146 |
-
|
147 |
-
model = DistilBertForSequenceClassification.from_pretrained(model_name)
|
148 |
-
|
149 |
-
trainer_0 = Trainer(model=model, args=training_args, train_dataset=train_dataset_0, eval_dataset=val_dataset_0)
|
150 |
-
trainer_0.train()
|
151 |
-
|
152 |
-
trainer_1 = Trainer(model=model, args=training_args, train_dataset=train_dataset_1, eval_dataset=val_dataset_1)
|
153 |
-
trainer_1.train()
|
154 |
-
|
155 |
-
trainer_2 = Trainer(model=model, args=training_args, train_dataset=train_dataset_2, eval_dataset=val_dataset_2)
|
156 |
-
trainer_2.train()
|
157 |
-
|
158 |
-
trainer_3 = Trainer(model=model, args=training_args, train_dataset=train_dataset_3, eval_dataset=val_dataset_3)
|
159 |
-
trainer_3.train()
|
160 |
-
|
161 |
-
trainer_4 = Trainer(model=model, args=training_args, train_dataset=train_dataset_4, eval_dataset=val_dataset_4)
|
162 |
-
trainer_4.train()
|
163 |
-
|
164 |
-
trainer_5 = Trainer(model=model, args=training_args, train_dataset=train_dataset_5, eval_dataset=val_dataset_5)
|
165 |
-
trainer_5.train()
|
166 |
-
|
167 |
-
# train_dataset = dataset(train_encodings, train_labels)
|
168 |
-
# val_dataset = dataset(val_encodings, val_labels)
|
169 |
-
# test_dataset = dataset(test_encodings, test_labels)
|
170 |
-
|
171 |
-
# -----------------------------------------------------------------
|
172 |
-
|
173 |
-
# test_dataset_list = [[], [], [], [], [], []]
|
174 |
-
# for i in test_labels:
|
175 |
-
# for j in range(6):
|
176 |
-
# test_dataset_list[j].append(i[j])
|
177 |
-
|
178 |
-
# -----------------------------------------------------------------
|
179 |
-
|
180 |
-
# val_dataset = dataset(val_encodings, val_labels)
|
181 |
-
|
182 |
-
# test_dataset_0 = dataset(test_encodings, test_dataset_list[0])
|
183 |
-
# test_dataset_1 = dataset(test_encodings, test_dataset_list[1])
|
184 |
-
# test_dataset_2 = dataset(test_encodings, test_dataset_list[2])
|
185 |
-
# test_dataset_3 = dataset(test_encodings, test_dataset_list[3])
|
186 |
-
# test_dataset_4 = dataset(test_encodings, test_dataset_list[4])
|
187 |
-
# test_dataset_5 = dataset(test_encodings, test_dataset_list[5])
|
188 |
-
|
189 |
-
# -----------------------------------------------------------------
|
190 |
-
|
191 |
-
# device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
192 |
-
|
193 |
-
# model = DistilBertForSequenceClassification.from_pretrained('distilbert-base-uncased')
|
194 |
-
# model.to(device)
|
195 |
-
# model.train()
|
196 |
-
|
197 |
-
# train_loader = DataLoader(train_dataset_0, batch_size=16, shuffle=True)
|
198 |
-
|
199 |
-
# optim = AdamW(model.parameters(), lr=5e-5)
|
200 |
-
|
201 |
-
# num_train_epochs = 2
|
202 |
-
# for epoch in range(num_train_epochs):
|
203 |
-
# for batch in train_loader:
|
204 |
-
# optim.zero_grad()
|
205 |
-
# input_ids = batch['input_ids'].to(device)
|
206 |
-
# attention_mask = batch['attention_mask'].to(device)
|
207 |
-
# labels = batch['labels'].to(device)
|
208 |
-
|
209 |
-
# outputs = model(input_ids, attention_mask=attention_mask, labels=labels)
|
210 |
-
|
211 |
-
# loss = outputs[0]
|
212 |
-
# loss.backward()
|
213 |
-
# optim.step()
|
214 |
-
|
215 |
-
# model.eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
@@ -183,4 +183,3 @@ if option == 'TextBlob':
|
|
183 |
# tokenizer = AutoTokenizer.from_pretrained(save_directory)
|
184 |
# model = AutoModelForSequenceClassification.from_pretrained(save_directory)
|
185 |
|
186 |
-
#------------------------------------------------------------------------
|
|
|
183 |
# tokenizer = AutoTokenizer.from_pretrained(save_directory)
|
184 |
# model = AutoModelForSequenceClassification.from_pretrained(save_directory)
|
185 |
|
|