Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from stability_sdk import client | |
| import stability_sdk.interfaces.gooseai.generation.generation_pb2 as generation | |
| from PIL import Image | |
| import io | |
| import os | |
| import warnings | |
| theme = gr.themes.Monochrome( | |
| primary_hue="indigo", | |
| secondary_hue="blue", | |
| neutral_hue="slate", | |
| radius_size=gr.themes.sizes.radius_sm, | |
| font=[gr.themes.GoogleFont("Open Sans"), "ui-sans-serif", "system-ui", "sans-serif"], | |
| ) | |
| def infer(prompt, api_key): | |
| stability_api = client.StabilityInference( | |
| key=api_key, # API Key reference. | |
| verbose=True, # Print debug messages. | |
| engine="stable-diffusion-xl-beta-v2-2-2", # Set the engine to use for generation. | |
| # Available engines: stable-diffusion-v1 stable-diffusion-v1-5 stable-diffusion-512-v2-0 stable-diffusion-768-v2-0 stable-inpainting-v1-0 stable-inpainting-512-v2-0 | |
| ) | |
| answers = stability_api.generate( | |
| prompt=prompt, | |
| seed=992446758, # If a seed is provided, the resulting generated image will be deterministic. | |
| # What this means is that as long as all generation parameters remain the same, you can always recall the same image simply by generating it again. | |
| # Note: This isn't quite the case for Clip Guided generations, which we'll tackle in a future example notebook. | |
| steps=30, # Amount of inference steps performed on image generation. Defaults to 30. | |
| cfg_scale=8.0, # Influences how strongly your generation is guided to match your prompt. | |
| # Setting this value higher increases the strength in which it tries to match your prompt. | |
| # Defaults to 7.0 if not specified. | |
| width=512, # Generation width, defaults to 512 if not included. | |
| height=512, # Generation height, defaults to 512 if not included. | |
| samples=2, # Number of images to generate, defaults to 1 if not included. | |
| sampler=generation.SAMPLER_K_DPMPP_2M # Choose which sampler we want to denoise our generation with. | |
| # Defaults to k_dpmpp_2m if not specified. Clip Guidance only supports ancestral samplers. | |
| # (Available Samplers: ddim, plms, k_euler, k_euler_ancestral, k_heun, k_dpm_2, k_dpm_2_ancestral, k_dpmpp_2s_ancestral, k_lms, k_dpmpp_2m) | |
| ) | |
| for resp in answers: | |
| for artifact in resp.artifacts: | |
| if artifact.finish_reason == generation.FILTER: | |
| warnings.warn( | |
| "Your request activated the API's safety filters and could not be processed." | |
| "Please modify the prompt and try again.") | |
| if artifact.type == generation.ARTIFACT_IMAGE: | |
| img = Image.open(io.BytesIO(artifact.binary)) | |
| return [img] | |
| css = """ | |
| .gradio-container { | |
| font-family: 'IBM Plex Sans', sans-serif; | |
| } | |
| .gr-button { | |
| color: white; | |
| border-color: black; | |
| background: black; | |
| } | |
| input[type='range'] { | |
| accent-color: black; | |
| } | |
| .dark input[type='range'] { | |
| accent-color: #dfdfdf; | |
| } | |
| .container { | |
| max-width: 730px; | |
| margin: auto; | |
| padding-top: 1.5rem; | |
| } | |
| #gallery { | |
| min-height: 22rem; | |
| margin-bottom: 15px; | |
| margin-left: auto; | |
| margin-right: auto; | |
| border-bottom-right-radius: .5rem !important; | |
| border-bottom-left-radius: .5rem !important; | |
| } | |
| #gallery>div>.h-full { | |
| min-height: 20rem; | |
| } | |
| .details:hover { | |
| text-decoration: underline; | |
| } | |
| .gr-button { | |
| white-space: nowrap; | |
| } | |
| .gr-button:focus { | |
| border-color: rgb(147 197 253 / var(--tw-border-opacity)); | |
| outline: none; | |
| box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000); | |
| --tw-border-opacity: 1; | |
| --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color); | |
| --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color); | |
| --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity)); | |
| --tw-ring-opacity: .5; | |
| } | |
| #advanced-btn { | |
| font-size: .7rem !important; | |
| line-height: 19px; | |
| margin-top: 12px; | |
| margin-bottom: 12px; | |
| padding: 2px 8px; | |
| border-radius: 14px !important; | |
| } | |
| #advanced-options { | |
| display: none; | |
| margin-bottom: 20px; | |
| } | |
| .footer { | |
| margin-bottom: 45px; | |
| margin-top: 35px; | |
| text-align: center; | |
| border-bottom: 1px solid #e5e5e5; | |
| } | |
| .footer>p { | |
| font-size: .8rem; | |
| display: inline-block; | |
| padding: 0 10px; | |
| transform: translateY(10px); | |
| background: white; | |
| } | |
| .dark .footer { | |
| border-color: #303030; | |
| } | |
| .dark .footer>p { | |
| background: #0b0f19; | |
| } | |
| .acknowledgments h4{ | |
| margin: 1.25em 0 .25em 0; | |
| font-weight: bold; | |
| font-size: 115%; | |
| } | |
| .animate-spin { | |
| animation: spin 1s linear infinite; | |
| } | |
| @keyframes spin { | |
| from { | |
| transform: rotate(0deg); | |
| } | |
| to { | |
| transform: rotate(360deg); | |
| } | |
| } | |
| #share-btn-container { | |
| display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem; | |
| margin-top: 10px; | |
| margin-left: auto; | |
| } | |
| #share-btn { | |
| all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;right:0; | |
| } | |
| #share-btn * { | |
| all: unset; | |
| } | |
| #share-btn-container div:nth-child(-n+2){ | |
| width: auto !important; | |
| min-height: 0px !important; | |
| } | |
| #share-btn-container .wrap { | |
| display: none !important; | |
| } | |
| .gr-form{ | |
| flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0; | |
| } | |
| #prompt-container{ | |
| gap: 0; | |
| } | |
| #prompt-text-input, #negative-prompt-text-input{padding: .45rem 0.625rem} | |
| #component-16{border-top-width: 1px!important;margin-top: 1em} | |
| .image_duplication{position: absolute; width: 100px; left: 50px} | |
| """ | |
| with gr.Blocks(css = css) as demo: | |
| gr.Markdown("# Stable Diffusion XL") | |
| gr.Markdown("<p>This is an unoffical demo for Stable Diffusion XL, which is the latest stable diffusion model released by Stability AI. The main features include Next-level photorealism capabilities, image composition and face generation, use of shorter prompts to create descriptive imagery, greater capability to produce legible text and rich visuals and jaw-dropping aesthetics</p>") | |
| gr.Markdown(""" Please refer to [the official website](https://stability.ai/stable-diffusion) for further information""") | |
| api_key_input = gr.Textbox(type = "password", label = "Enter your StabilityAI API key here") | |
| with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True): | |
| with gr.Column(): | |
| text = gr.Textbox( | |
| label="Enter your prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| elem_id="prompt-text-input", | |
| ).style( | |
| border=(True, False, True, True), | |
| rounded=(True, False, False, True), | |
| container=False, | |
| ) | |
| btn = gr.Button("Generate image").style( | |
| margin=False, | |
| rounded=(False, True, True, False), | |
| full_width=False, | |
| ) | |
| gallery = gr.Gallery( | |
| label="Generated images", show_label=False, elem_id="gallery" | |
| ).style(grid=[2], height="auto") | |
| btn.click(infer, inputs=[text, api_key_input], outputs=[gallery]) | |
| examples = [ | |
| ["Vintage hot rod with custom flame paint job"], | |
| ["Ancient, mysterious temple in a mountain range, surrounded by misty clouds and tall peaks"], | |
| ["Glimpses of a herd of wild elephants crossing a savanna"], | |
| ["Beautiful waterfall in a lush jungle, with sunlight shining through the trees,"] | |
| ] | |
| ex = gr.Examples(examples=examples,inputs=[text], cache_examples=False) | |
| demo.launch() |