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Abstract

One way to enhance the reasoning capability of
Large Language Models (LLMs) is to conduct
Supervised Fine-Tuning (SFT) using Chain-of-
Thought (CoT) annotations. This approach
does not show sufficiently strong generaliza-
tion ability, however, because the training only
relies on the given CoT data. In math problem-
solving, for example, there is usually only one
annotated reasoning path for each question in
the training data. Intuitively, it would be better
for the algorithm to learn from multiple an-
notated reasoning paths given a question. To
address this issue, we propose a simple yet ef-
fective approach called Reinforced Fine-Tuning
(ReFT) to enhance the generalizability of learn-
ing LLMs for reasoning, with math problem-
solving as an example. ReFT first warmups
the model with SFT, and then employs on-line
reinforcement learning, specifically the PPO
algorithm in this paper, to further fine-tune the
model, where an abundance of reasoning paths
are automatically sampled given the question
and the rewards are naturally derived from the
ground-truth answers. Extensive experiments
on GSM8K, MathQA, and SVAMP datasets
show that ReFT significantly outperforms SFT,
and the performance can be potentially further
boosted by combining inference-time strategies
such as majority voting and re-ranking. Note
that ReFT obtains the improvement by learn-
ing from the same training questions as SFT,
without relying on extra or augmented training
questions. This indicates a superior generaliza-
tion ability for ReFT. The code of this work is
publicly available1.

1 Introduction

The state-of-the-art approaches to solving math
problems (Uesato et al., 2022; Luo et al., 2023;
Wang et al., 2023a) employ Supervised Fine-

* indicates equal contribution, † indicates corresponding
author

1https://github.com/lqtrung1998/mwp_ReFT

Supervised Fine-Tuning

Model

Question (x): Weng earns $12 an hour for babysitting. Yesterday, she just did
50 minutes of babysitting. How much did she earn?

Chain-of-Thought (e): We need to calculate her hourly rate and then multiply
it by the amount of time she worked. First, we need to convert 50 minutes to
hours. There are 60 minutes in an hour, so 50 minutes is equal to 50/60 = 5/6
hours. Next, we can calculate Weng's earnings by multiplying her hourly rate
by the amount of time she worked:  $12/hour x 5/6 hour = $10. Therefore,
Weng earned $10 for 50 minutes of babysitting. The answer is 10.

Answer (y): 10
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Figure 1: An example of question (x), CoT (e), and
answer (y) in GSM8K (Cobbe et al., 2021a). The SFT
process iterates several epochs on the training data. The
proposed ReFT warm-up from SFT and performs RL
training on the same data.

Tuning (SFT) to train the models using Chain-of-
Thought (CoT) annotations (Wei et al., 2022). As
shown in Figure 1, a CoT annotation outlines the
intermediate reasoning steps toward solving a math
problem.

Usually there is one CoT annotation for each
question in the training data, i.e., one correct rea-
soning path, which is utilized in SFT. We observe
that this may result in relatively weak generaliza-
tion abilities of the SFT models. It is often the case
that multiple valid CoT annotations exist for the
same question (Cobbe et al., 2021a; Zhang et al.,
2023), underscoring the need for a more powerful
fine-tuning approach. To address this problem, we
propose a simple yet effective approach called Re-
inforced Fine-Tuning (ReFT), depicted in the lower
part of Figure 1.

ReFT commences with a warm-up stage involv-
ing Supervised Fine-Tuning (SFT) in one or two
epochs (Figure 1, shaded box). This initial stage
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Figure 2: Comparison between SFT and ReFT on the
presence of CoT alternatives.

equips the model with the ability to generate cor-
rect responses to mathematical problems to some
extent, as demonstrated in prior work (Cobbe et al.,
2021a). Next, ReFT proceeds to further refine the
model through the utilization of an online Rein-
forcement Learning (RL) algorithm (Sutton and
Barto, 2018), specifically Proximal Policy Opti-
mization (PPO) (Schulman et al., 2017) in this pa-
per. In this way, ReFT is able to sample multiple
correct reasoning paths or CoT annotations and
learn from them (Figure 2, right).

Since the training data include ground-truth an-
swers, the golden rewards can be naturally derived
from them when training PPO. Consequently, there
is no requirement for a separately trained reward
model. In contrast, RLHF (Ouyang et al., 2022)
has to utilize a reward model that is learned from
human-labeled data.

During the warm-up stage, ReFT acquires a cer-
tain level of accuracy by supervised learning. In
the RL stage, ReFT further enhances its ability by
reinforcement learning through sampling various
CoT reasoning paths. In this way, ReFT gets much
richer supervision signals than SFT. This approach
enables ReFT to greatly improve generalization in
math problem-solving (Gao et al., 2018; Brown
et al., 2020). Note that ReFT outperforms SFT by
using the same training questions as SFT, without
relying on extra or augmented training questions.
In fact, ReFT does not conflict with such a data
engineering, and can be seamlessly combined with
it.

Our contributions can be summarized as fol-
lows:

• We introduce a novel fine-tuning approach, re-
inforced fine-tuning (ReFT), which utilizes re-
inforcement learning to solve math problems.
ReFT exhibits enhanced generalization capa-
bilities compared to conventional supervised
fine-tuning (SFT) when trained on the same
dataset.

• We conduct extensive experiments using two
foundational models, CodeLLAMA (Touvron
et al., 2023; Roziere et al., 2023) and Galac-
tica (Taylor et al., 2022), on three standard
mathematical datasets: GSM8K (Cobbe et al.,
2021a), MathQA (Amini et al., 2019), and
SVAMP (Patel et al., 2021). Our experiments
cover both natural language and program-
based CoTs, demonstrating the significantly
improved performance and generalization abil-
ity of ReFT.

• Additionally, we demonstrate that ReFT ben-
efits from both majority voting (Wang et al.,
2023b) and reward model reranking (Uesato
et al., 2022) at inference-time, further improv-
ing its performance.

2 Related Work

Math Problem Solving Recent research efforts
focus on CoT prompt design and data engineering.
Most of them attempted to make CoT comprehen-
sive and fine-grained to present the step-by-step
reasoning solutions (Nye et al., 2021; Fu et al.,
2023; Zhou et al., 2023b; Khot et al., 2023; Imani
et al., 2023; Miao et al., 2023). Gao et al. (2023)
further proposed to use the Python program as CoT
prompt, demonstrating more accurate reasoning
steps and significant improvements over the natu-
ral language CoT (Wei et al., 2022). Zhou et al.
(2023a) introduced a prompting method that gener-
ates code to verify the intermediate reasoning step
with GPT-4 (OpenAI, 2023), thus achieving state-
of-the-art performance on GSM8K (Cobbe et al.,
2021a) and MATH (Hendrycks et al., 2021). An-
other line of work focuses on improving the quality
of CoT (Wang et al., 2023a; Liu et al., 2023; Yu
et al., 2023) and increasing the amount of CoT
data (Luo et al., 2023; Yue et al., 2023) from Ope-
nAI’s ChatGPT (gpt-3.5-turbo) or GPT-42.

Reinforcement Learning Our work is mostly
related to the recent work that applies PPO (Schul-
man et al., 2017) to natural language process
for aligning human preferences (Ouyang et al.,
2022). Since then, several training algorithms
have been proposed to efficiently improve the
alignment, including direct preference optimiza-
tion (DPO) (Rafailov et al., 2023), identity pref-
erence optimization (IPO) (Azar et al., 2023),
and Kahneman-Tversky optimization (KTO) (Etha-

2https://chat.openai.com/

https://chat.openai.com/


yarajh et al., 2023). Other than the purpose of
alignment, we aim to adopt reinforcement learning
as a fine-tuning paradigm to improve performance
over conventional supervised fine-tuning.

Specifically for solving math problems, Uesato
et al. (2022) and Lightman et al. (2023) trained an
outcome-based or process-based reward model to
perform reranking (Cobbe et al., 2021a) to achieve
much better performance over SFT and majority
voting (Wang et al., 2023b). While our approach
aims to improve the performance of the policy it-
self, these reward model reranking approaches can
be easily integrated into the resulting policy model.

3 Method

In this work, we focus on natural language CoT
(N-CoT) (Wei et al., 2022) (Figure 1) and program-
based CoT (Gao et al., 2023) (P-CoT) using
Python. Gao et al. (2023) proposed the program-
based CoT for math problem solving. We can
simply execute the program to obtain the answer.
To ensure clarity and avoid ambiguity, we use the
terms N-CoT and P-CoT to represent natural lan-
guage and program-based CoTs in the rest of this
paper, respectively.

3.1 Reinforced Fine-Tuning

The proposed Reinforced Fine-Tuning (ReFT) pro-
cess consists of two stages: the warm-up stage and
the reinforcement learning stage. The overall algo-
rithm is shown in Algorithm 1.

Warm-up In this stage, the policy is fine-tuned
for a few epochs on a dataset comprising of the
“(question, CoT)” tuples: (x, e). It enables the
model to have basic problem-solving skills to gen-
erate a proper response for a question3. Formally,
the CoT generation process can be decomposed
into a sequence of next token prediction actions.
The last action token, <eos>, signals the genera-
tion process to terminate. The CoT e is written
as:

e = [a1, a2, ..., aL−1, aL=<eos>]

where L represents the maximum length. At
timestep t, the action at is sampled from a policy
πθ(·|st) where at can be any token in the vocabu-
lary and the state st comprises of all tokens in the
question and all tokens generated so far. After each

3The underlying concept is similar to the verifier train-
ing (Cobbe et al., 2021a) to generate multiple solutions.

action, the resulting state st+1 is the concatenation
of the current state st and the action at:

st+1 =

{
x, t = 0

[st, at], 1 ≤ t ≤ L
.

As the produced action corresponds to the <eos>
token, the resulting state sL+1 is the terminal state
and the generation process is finished. With this no-
tation, the loss function for a sample can be written
as in Equation 1:

LSFT (θ) = −Ee∼D

[
L∑
i=1

log (πθ(at|st))

]
(1)

Reinforcement Learning In this stage, the pol-
icy improves its performance via a form of online
self-learning using a dataset comprising of (ques-
tion, answer) tuples: (x,y). Specifically, the pol-
icy model learns by repeatedly sampling responses
(Figure 2), evaluating the response’s answer cor-
rectness, and updating its parameters in an online
fashion (line 7-14 in Algorithm 1). We employ
PPO (Schulman et al., 2017) with a clipped ob-
jective algorithm for training. Following Ziegler
et al. (2019), the value model Vϕ is constructed
by appending a linear value head on top of the
last hidden states of the policy model πθ, which is
the model after the warm-up stage. The reward of
0 is given for all action resulting in non-terminal
state. At the terminal state, we use a reward func-
tion that directly compares the answer extracted
from the state’s CoT and the ground-truth answer
y . Here, the reward function returns 1 if the an-
swer is deemed correct, otherwise 0 is returned.
On dataset whose answers are all numeric, partial
reward (Zhong et al., 2017; Le et al., 2022) of 0.1
can be applied when the answer can be extracted
and of numeric type. For 1 ≤ t ≤ L, we write

r(st, at, st+1)=


1, EXTRACT(st+1) = y

0.1, EXTRACT(st+1) ̸= null, ̸= y

0, EXTRACT(st+1) = null

Such a partial reward can help reduce the effect
of learning from sparse reward (Riedmiller et al.,
2018; Trott et al., 2019). In addition, following
Zheng et al. (2023), our total reward is the sum
of reward function score and the Kullback-Leibler
(KL) divergence (Kullback and Leibler, 1951) be-
tween the learned RL policy and initial policy



Algorithm 1: Reinforced Fine-Tuning
Input: Dtrain = {(x, e,y)}: Tuples of (question, CoT, answer), W : number of warm-up steps, T :

number of RL steps, U : number of updates per RL step, π(0)
θ : Initial policy.

Output: πθ: Final policy
1 πθ = π

(0)
θ

2 // Warm-up stage
3 for i← 1 to W do
4 x, e, _ ∼ Dtrain // Sample mini-batch from Dtrain

5 θ = OPTIMIZATION_STEP(LSFT (θ)) // Update model parameters for this batch (Eq. 1)

6 // Reinforcement learning stage
7 for i← 1 to T do
8 x, _,y ∼ Dtrain // Sample mini-batch without CoT
9 ê ∼ πθ // On-policy CoT sampling

10 ŷ ← EXTRACT(ê) // Extract the answer from CoT
11 πθold ← πθ, Vϕold ← Vϕ

12 Compute δt, Ât, R̂t using πθold , Vϕold ,x, ê, ŷ and y // §3.1 Reinforcement Learning
13 for j ← 1 to U do
14 θ,ϕ = OPTIMIZATION_STEP(LRL(θ,ϕ)) // Use the loss in Equation 2

15 return πθ

scaled by a coefficient factor β.

rtotal(st,at, st+1) = r(st, at, st+1)

− βKL
(
πθ(·|st),π

(0)
θ (·|st)

)
For advantage calculation, the generalized advan-
tage estimate from Schulman et al. (2018) is em-
ployed.

Ât =
L−t∑
l=0

(γλ)lδt+l,

where the Temporal Difference (TD) is defined as

δt′ = −Vϕ(st′)+rtotal(st′ , at′ , st′+1)+γVϕ(st′+1)

with the terminal state value Vϕ(sL+1) := 0, λ ∈
(0, 1] is the discount factor for rewards, and γ ∈
[0, 1] is the discount factor for TD. For the estimate
of return, we leverages the λ-return R̂t, which can
be written as the sum of the generalized advantage
estimate and the value estimate:

R̂t = Ât + Vϕ(st)

Lastly, the policy and value objectives can be writ-
ten as in two equations below

Lpolicy(θ) = −Ee∼πθold

[
min

(
πθ(at|st)
πθold(at|st)

Ât,

clip
(

πθ(at|st)
πθold(at|st)

, 1− ϵ, 1 + ϵ

)
Ât

)]

Lvalue(ϕ) =
1

2
Ee∼πθold

[
max

(∥∥∥Vϕ(st)− R̂t

∥∥∥2 ,
∥∥∥clip

(
Vϕ(st)− R̂t, Ât − ϵ, Ât + ϵ

)∥∥∥2)]
where πθold , Vϕold are used for sampling CoT and
computing Ât, R̂t. The unified loss function is the
weighted sum of the above objectives.

LRL(θ,ϕ) = Lpolicy + αLvalue (2)

where α is the coefficient for the value function
loss.

4 Experiments

4.1 Datasets
We conduct experiments on three math prob-
lem datasets: GSM8K (Cobbe et al., 2021a),
SVAMP (Patel et al., 2021) and MathQA (Amini
et al., 2019). For both GSM8K and SVAMP, the
format of answers is a numeric value. In MathQA,
the format is instead a list of multiple choices (i.e.,
ABCD). Table 1 presents the statistics of all datasets.
We perform few-shot prompting (Wei et al., 2022;
Gao et al., 2023) using GPT-3.5-turbo to obtain
both the N-CoT and P-CoT annotations4. The N-
CoT and P-CoT annotations are obtained following

4Examples of N-CoT and P-CoT representations can be
found in Appendix A.



GSM8k SVAMP MathQAMCQ MathQAnumeric

N-CoT 7,465 3,076 14,862 8,955
P-CoT 7,356 3,043 15,250 7,672

Test 1,319 1,000 01,605 1,605

Table 1: Dataset statistics of two types of CoT in the
training set and the test set.

Jie et al. (2023). We also conducted an additional
experiment on a numeric version of MathQA (Jie
and Lu, 2023) where the format is also a numeric
value. Such experiments are used to demonstrate
our assumptions of potential reward hacking phe-
nomenon (Skalse et al., 2022) on MathQA (§4.4).

4.2 Baseline

We compare ReFT with SFT and self-training (Xie
et al., 2020; Amini et al., 2022) baselines. SFT
simply fine-tunes the language model on the train-
ing data. Experiments with self-training meth-
ods ensure a relatively fair comparison because
all these methods share the mechanism that the
training makes use of the samples generated from
the model.

We implemented Offline Self-Training (Offline-
ST) (He et al., 2020), and Online (Hoi et al., 2021)
Self-Training (Online-ST). The Offline-ST method
is similar to expert iteration (Anthony et al., 2017;
Uesato et al., 2022). We first use the SFT check-
point from the early checkpoint to sample the CoTs
and verify them against the ground truth. We only
retain those expert samples that have a correct an-
swer. We perform supervised fine-tuning on the
combination of original training data and the expert
samples.

The Online-ST method is made to be closely
comparable to ReFT. Following ReFT, Online-ST
has the same warm-up process. After that, we per-
form continual training with the samples generated
on the fly. At each training step, the model first
samples CoTs for a batch and only retains those
with correct answers. The resulting batch consists
of both sampled and ground-truth CoTs. We then
update the model parameters on this batch with
the supervised fine-tuning objective LSFT . Com-
pared with ReFT, Online-ST neither makes use of
negative responses (with an incorrect answer) nor
has a dedicated mechanism to prevent the model
from significantly diverging from the initial model,
which can manifest as task-specific overfitting and
training instability.

4.3 Experimental Setup

We conduct experiments with two foundation mod-
els: Galactica-6.7B5 (Taylor et al., 2022) and
Codellama-7B6 (Roziere et al., 2023). Both models
are reported to have strong performance in solving
math problems and are commonly adopted in recent
literature on reasoning tasks (Yue et al., 2023; Luo
et al., 2023). In addition to the comparison with
baselines, we also apply common techniques, ma-
jority voting (Wang et al., 2023b) and reward model
reranking (Lightman et al., 2023) on GSM8K.

Hyper-parameter In all experiments, the train-
ing is done with 8 A100-80GB GPUs using Deep-
Speed (Rajbhandari et al., 2020; Rasley et al., 2020)
Zero stage 2 and HuggingFace Accelerate (Gugger
et al., 2022). During the warm-up stage of ReFT,
we use AdamW (Loshchilov and Hutter, 2017) op-
timizer with 0.1 warm-up ration. The batch size is
set to 48 and learning rate is 1e-5. The maximum
length is set to 1024. The number of epochs in the
warm-up stage is either 1 or 2 in all settings except
on MathQAMCQ and MathQAnumeric where we use
upto 5 and 10 respectively. The model is trained
for 300 epochs with a learning rate of 3e-7. Fol-
lowing Ziegler et al. (2019), the λ, γ, α, ϵ and U in
PPO are set to 1, 0.95, 5, 0.2, and 2, respectively.
The KL coefficient β is set to 0.01 for P-CoT and
is set to 0.05 for N-CoT experiments. Further hy-
perprameter settings about ReFT can be found in
Appendix B.

For SFT baseline, we train the model for 40
epochs and choose the checkpoint with best perfor-
mance. This number of epochs has been chosen
to be sufficiently large to ensure SFT converges.
For Offline-ST baseline, we sample the CoTs by
using the checkpoint from the ReFT warm-up stage.
Using the generation temperature of 1.0 and max
length of 1024, we sample 100 CoTs for each
question and only keep those with a correct an-
swer. Following Singh et al. (2023), we then sub-
sample the CoTs to 10 random unique CoTs per
question to balance difficulties of questions. As
mentioned in §4.2, the Online-ST baseline tries
to mimic the same setting as in ReFT. We have
the same warm-up process and the hyperparameter
setting is roughly the same as ReFT.

5https://huggingface.co/facebook/galactica-6.
7b

6https://huggingface.co/codellama/
CodeLlama-7b-hf

https://huggingface.co/facebook/galactica-6.7b
https://huggingface.co/facebook/galactica-6.7b
https://huggingface.co/codellama/CodeLlama-7b-hf
https://huggingface.co/codellama/CodeLlama-7b-hf


Method Size GSM8K SVAMP MathQAMCQ Average
N-CoT P-CoT N-CoT P-CoT N-CoT P-CoT N-CoT P-CoT

Galactica + SFT 6.7B 41.0 57.1 53.8 69.3 58.7 64.8 51.2 63.7
Galactica + Offline Self-Training 6.7B 45.0 61.0 56.5 70.8 60.7 67.5 54.1 66.5
Galactica + Online Self-Training 6.7B 45.7 61.9 58.5 73.7 59.7 62.4 54.6 66.0
Galactica + ReFT 6.7B 46.8 68.4 62.3 73.9 58.3 70.4 55.8 70.9

CodeLLAMA + SFT 0.7B 44.0 64.4 59.6 76.2 56.5 64.2 53.4 68.3
CodeLLAMA + Offline Self-Training 0.7B 38.8 65.0 54.2 72.5 57.6 62.8 50.2 66.8
CodeLLAMA + Online Self-Training 0.7B 40.0 64.3 59.7 75.4 55.5 68.2 53.1 69.3
CodeLLAMA + ReFT 0.7B 53.5 72.8 60.0 78.4 57.9 71.5 57.1 74.2

Table 2: Value accuracy comparison among the baselines and proposed ReFT method fine-tuned with two foundation
models on all datasets.

Reward Model Reranking Following (Cobbe
et al., 2021a; Uesato et al., 2022), we train a reward
model (RM) to determine the correctness of the
CoT. To construct the RM training data, we use
the model from the warm-up stage and perform
sampling to obtain 100 CoTs for each question in
the training set. The CoTs are deduplicated and
the binary labels can be obtained by comparing the
extracted answer against the ground truth.

As a common practice, the reward model is a
language model that is initialized from the best
SFT checkpoint (Cobbe et al., 2021a; Ouyang et al.,
2022). Similar to the outcome-based reward model
(ORM) (Uesato et al., 2022), the reward model is
trained to predict a binary label that indicates the
“correct” or “incorrect” solution. Once the input
passes through the reward model, classification is
conducted with a linear classifier on the hidden
state of the last token. Finally, the solution with
the highest “correct” score among the candidates
is selected as the final answer. We train the RM
model for 3 epochs using a batch size of 48 and
maximum length of 700.

Evaluation We report value accuracy for both
N-CoT and P-CoT on all datasets. Specifically for
majority voting and reranking (Table 4), we sam-
ple 100 CoTs for evaluation. In voting, the valid
answer with majority counts is chosen as the final
answer for computing accuracy. In reranking, we
choose the CoT with the highest score and extract
the answer.

4.4 Results

ReFT Outperforms SFT Table 2 compares the
performance among the baselines and proposed
ReFT on GSM8K, SVAMP, and MathQA datasets.
We can observe that ReFT consistently achieves
much better performance over the SFT and the self-

Question: The diagonals of a rhombus are 18 cm and 22 cm. Find
its area?
A) 277, B) 266, C) 198, D) 288, E) 212C) 198

Generated CoT: To find the area of a rhombus, we need to multiply
the lengths of its diagonals and divide the result by 2.
Area of rhombus = (Product of diagonals) / 2
Area of rhombus = (18 cm x 22 cm) / 2
Area of rhombus = 344 cm2 / 2
Area of rhombus = 172 cm2

Therefore, the answer is: C

Figure 3: Example prediction of MathQAMCQ reveals
reward hacking.

training family approaches except on MathQAMCQ
N-CoT. Specifically, we have more than 9-point
and 8-point improvement over SFT with CodeL-
LAMA on GSM8K N-CoT and P-CoT, respectively.
On average, we achieve 3.7-point and 5.9-point
improvements with CodeLLAMA on all datasets
in N-CoT and P-CoT, respectively. More impor-
tantly, no additional annotations or reward models
are used in ReFT. Such strong results demonstrate
robust generalization of ReFT (see Analysis §5.1)
and huge potential for further exploring the training
data with reinforcement learning (Lu et al., 2023).

Offline self-training includes the sampling data
from the initial policy for fine-tuning. We can see
this simple baseline can sometimes improve the
performance compared with SFT (He et al., 2020;
Gulcehre et al., 2023) but the improvements are
far behind the one made by ReFT. Such compar-
isons indicate that “exploring” is essential in ReFT
to have good performance. Though online self-
training achieves some improvements with Galac-
tica, it is still far behind ReFT on average. This
result indicates that incorrect instances are also
very essential to guide the model for better explo-
ration. Comparisons with self-training also suggest
the proposed approach with on-policy sampling
and reinforcement learning is better than standard
data augmentation approaches.



Method N-CoT

Galactica SFT 41.1
ReFT 44.9

Codellama SFT 36.3
ReFT 41.0

Table 3: Accuracy of SFT and ReFT with two founda-
tion models on MathQAnumeric benchmark

Reward Hacking for MathQA Our investiga-
tion of the negative results on MathQAMCQ in-
dicates that ReFT suffers from the reward hack-
ing (Skalse et al., 2022) on the multi-choice ques-
tion during training. Figure 3 shows how the
sampled solutions produce “inaccurate rewards”,
which makes the RL training suffer. As we can see,
the sampled CoT obtains an incorrect answer “344”
which is not the product of “18” and “22”. How-
ever, the final reasoning step still predicts the option
“C” as the final answer as the model would always
predict one of the options from {A, B, C, D, E}
regardless of the correctness of intermediate CoT7.
Thus, such a misleading CoT will receive a pos-
itive reward “1” and misguide the model to treat
this as a correct CoT. The underlying reward hack-
ing phenomenon severely tampers the model train-
ing (Everitt et al., 2021). This is also the reason
that we chose the checkpoint with longer warm-up
steps for MathQA to reduce the reward hacking
effect.

To further demonstrate the negative effect of
MCQ questions, we experiment on the MathQA
variant by Jie and Lu (2023), MathQAnumeric (Ta-
ble 1), which removed the options in the question,
and directly predict the numeric answer. Table
3 presents the comparison against SFT. We can
observe that ReFT consistently outperforms SFT
using both Galactica and CodeLLAMA.

Majority Voting and Reranking Benefit ReFT
Following Wang et al. (2023b); Uesato et al. (2022);
Lightman et al. (2023), we also perform majority
voting and reward model reranking to show that
ReFT can benefits from these common techniques.
Specifically, we perform sampling from both SFT
and ReFT policies. We sample 100 CoT solutions
for each question and apply the reward model de-
scribed in §4.3. Table 4 shows that ReFT consis-
tently achieves the best performance on GSM8K

7We found that program-based CoTs are less likely to
suffer as it is more rigorous than natural language.

Method Size GSM8K
N-CoT P-CoT

Galactica + SFT + Voting 6.7B 50.8 61.1
Galactica + ReFT + Voting 6.7B 58.7 70.7

Galactica + SFT + Reranking 6.7B 59.5 72.4
Galactica + ReFT + Reranking 6.7B 62.8 76.6

CodeLLAMA + SFT + Voting 0.7B 53.8 67.9
CodeLLAMA + ReFT + Voting 0.7B 65.1 75.0

CodeLLAMA + SFT + Reranking 0.7B 61.9 77.6
CodeLLAMA + ReFT + Reranking 0.7B 65.7 79.3

Extra Training Data Used †
WizardMath (Luo et al., 2023) 07B 54.9 -
WizardMath (Luo et al., 2023) 13B 63.9 -
MathCoder (Wang et al., 2023a) 07B 67.8 -
MAmmoTH-Coder (Yue et al., 2023) 07B 22.2 58.8
MAmmoTH-Coder (Yue et al., 2023) 70B 72.4 76.7

GPT-3.5-turbo (Jie et al., 2023) N.A. 75.3 78.0
GPT-4 (OpenAI, 2023; Zhou et al., 2023a) N.A. 93.0 97.0

Table 4: Solving accuracy of majority voting and reward
model reranking for SFT and ReFT on GSM8K. We also
include existing approaches for comparison.

Method GSM8K SVAMP MathQAMCQ

Galactica-125M + SFT 23.7 35.6 58.4
Galactica-125M + ReFT 29.8 39.4 60.5

Table 5: Experiments on P-CoT data with Galactica-
125M.

by reward model reranking. ReFT + Voting signifi-
cantly outperforms SFT + Voting by 9.2 points on
average across all settings. ReFT with reranking
outperforms SFT with reranking by 3.3 points on
average.

Compared with existing open-source ap-
proaches (Luo et al., 2023; Wang et al., 2023a;
Yue et al., 2023) (Table 4 bottom8), our best
P-CoT variant achieves the best performance
with accuracy 79.3 on GSM8K. In addition, these
approaches mainly include extra data generated
from ChatGPT and perform distillation during
fine-tuning. In contrast, we improve the policy
itself by exploiting the potential of existing
training data and pushing the limit of the policy
performance. Our best result reported in Table
4, i.e., the CodeLLAMA + ReFT + Reranking
with P-CoT setting, even slightly surpasses
GPT-3.5-turbo. However, we obtain the result with
a model that is only in the size of 7B.

Experiments with Small Model Intuitively, ex-
ploration could lead to imperfect demonstration
with a small language model. We conduct an exper-

8Numbers are taken from original papers. The N-CoT and
P-CoT results for MAmmoTH-Coder are reported in their
appendix.



Model Setting Accuracy

CodeLLAMA + ReFT 72.7
– remove partial reward 70.9
– KL coefficient β = 0 collapse
– non-shared value model 72.6

Table 6: Ablation study on GSM8K P-CoT.

iment on P-CoT data using Galactica-125M9. Table
5 shows the performance comparison between SFT
and ReFT. Surprisingly, ReFT still outperforms
SFT on three datasets even with a small model.
Such improvements demonstrate the robustness of
ReFT during the exploration of reasonable pro-
grams.

Ablation Study We perform the ablation study
using CodeLLAMA on GSM8K P-CoT (Table 6).
Without the partial reward, ReFT obtains a lower
accuracy 70.9 but it is still much better than SFT.
As mentioned in §3.1, such a partial reward can
help reduce the effect of sparse reward (Trott et al.,
2019) during training. In addition, the policy distri-
bution will easily collapse to produce unexpected
results (i.e., 0 accuracy) if we set the KL coefficient
β to 0. It is certainly critical to impose constraints
on the space that the policy explores (Ouyang
et al., 2022). The initial warm-up step essentially
makes such constraints and allows the policy to
further explore within the range that is governed
by β. Finally, we also experiment with a value
model that has no parameter shared with the policy
model (Andrychowicz et al., 2021; Cobbe et al.,
2021b). The individual value model initializes the
parameter the same as the policy model. We found
that such a setting allows the model to converge
faster and eventually reach equivalent performance
but sacrifices two times of original computation
overhead as we have to perform the forward pass
twice for each batch.

5 Analysis

5.1 Generalization

Figure 4 shows the mean reward, evaluation ac-
curacy, and the KL divergence during training of
ReFT10 on GSM8K P-CoT. SFT converges and
becomes overfiting when approaching 40th epoch.

9The smallest model size available in Galactica: https:
//huggingface.co/facebook/galactica-125m.

10For illustration purpose, we only shows the mean reward
and KL for 60 epochs.

However, we can see the mean reward is around
80% to 90% for the ReFT policy at 40th epoch,
and the value accuracy is also increasing. In addi-
tion, we can see that the KL divergence (Figure 4
(c)) is very large in the beginning and then main-
tain a reasonable value between 0 and 10. The
stable KL divergence indicates our policy performs
exploration within a space that contains appropri-
ate programs. The underlying reinforcement learn-
ing mechanism greatly improves the generalization
ability of ReFT (Brown et al., 2020).

5.2 When ReFT surpasses SFT?

To further investigate the relationship between
ReFT and SFT, we perform ReFT training with
different number of warm-up steps from SFT. Fig-
ure 5 shows the value accuracy of different ReFT
variants against SFT11. Specifically, if the wamrup
step is 3, that means the policy initialize from the
3rd-epoch SFT checkpoint. We can see that all
ReFT policies have worse performance in the be-
ginning where the epoch is less than 8. Because the
linear layer in the shared value model is randomly
initialized and it could take a few epochs to adjust
the distribution. Starting from the 30th epoch, SFT
converges and all ReFT variants are still improv-
ing. We can also see that all variants outperform
SFT by a significant margin and there is no obvious
advantage of any specific ReFT variant.

6 Conclusion

We have introduced reinforced fine-tuning (ReFT)
as a new method for fine-tuning models to solve
math problems. In contrast to SFT, ReFT optimizes
a non-differentiable objective by exploring multi-
ple CoT annotations in the search for the correct
answer, rather than relying on a single CoT annota-
tion.

Through extensive experimentation on three
datasets using two foundation models, we have
demonstrated that ReFT outperforms SFT in terms
of performance and generalization ability. More-
over, we have showcased the compatibility of mod-
els trained with ReFT with techniques such as ma-
jority voting (Wang et al., 2023b) and reward model
reranking (Cobbe et al., 2021a; Uesato et al., 2022).

Furthermore, ReFT has exhibited superior per-
formance compared to several publicly available
open-source models of comparable sizes in math

11We only show 60 epochs for illustration purposes. The
performance for the later epoch will be shown in Appendix.

https://huggingface.co/facebook/galactica-125m
https://huggingface.co/facebook/galactica-125m
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Figure 4: Training reward of ReFT, evaluation accuracy, KL against training epoch on GSM8K P-CoT.
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problem-solving. This demonstrates the effective-
ness and practical value of the ReFT approach.

7 Future Work

We have made the first attempt of applying re-
inforcement learning, specifically the PPO algo-
rithm (Schulman et al., 2017), to fine-tune of LLMs
for math problem-solving. Our future work in-
cludes utilization of offline reinforcement learn-
ing techniques (Levine et al., 2020; Gulcehre
et al., 2023), development of a warm-up free
method to enhance training efficiency and perfor-
mance, thereby reducing the gap with the rerank-
ing method. Additionally, Lightman et al. (2023)
suggests that a well-trained process-based reward
model (PRM) can significantly enhance perfor-
mance. Hence, it would be worthwhile to explore
the implementation of process-based rewards in
reinforcement learning training. Lastly, as ReFT is
a versatile approach, we intend to apply it to more
general reasoning tasks where the inference can be
formalized with CoT.

Limitations

Training Efficiency As depicted in Figure 4 (b),
it is evident that ReFT necessitates a greater num-

ber of epochs to reach convergence compared to
SFT. This is primarily due to the fact that ReFT op-
timizes a non-differentiable objective and requires
exploration of the generation space to attain correct
answers. While a larger learning rate may expe-
dite convergence, it also makes the policy more
susceptible to instability and potential collapse. Al-
ternatively, using a larger batch size is a viable op-
tion; however, it comes at the expense of increased
computational costs.

Reward Hacking Our reward function relies
solely on the final answer to determine the reward.
However, as demonstrated in the experiments con-
ducted on the MathQAMCQ N-CoT dataset, the pol-
icy can be easily manipulated if the possible space
of final answers is limited, such as A,B,C,D. To
mitigate the issue of reward hacking, it may be nec-
essary to employ a more detailed or process-based
reward function that takes into account a broader
range of factors.
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Question: Weng earns $12 an hour for babysitting. Yesterday, she
just did 50 minutes of babysitting. How much did she earn?

N-CoT: We need to calculate her hourly rate and then multiply it by
the amount of time she worked.

First, we need to convert 50 minutes to hours.

There are 60 minutes in an hour, so 50 minutes is equal to 50/60 =
5/6 hours.

Next, we can calculate Weng’s earnings by multiplying her hourly
rate by the amount of time she worked:

$12/hour x 5/6 hour = $10.

Therefore, Weng earned $10 for 50 minutes of babysitting.

The answer is 10.

P-CoT:
def solution():

"""Weng earns $12 an hour for babysitting. Yesterday, she just did
50 minutes of babysitting. How much did she earn?"""

hourly_rate = 12
minutes_worked = 50
hours_worked = minutes_worked / 60
earnings = hourly_rate * hours_worked
result = earnings
return result

Figure 6: N-CoT and P-CoT examples on GSM8K

A Examples of N-CoT and P-CoT
Representations

We present examples of natural language CoT and
program-based CoT from GSM8K dataset in Fig-
ure 6. We follow Jie et al. (2023) to perform few-
shot prompting and obtain the CoT representations.
The natural language CoT is generally the same
as the one presented in Wei et al. (2022). The for-
mat program-based CoT is similar to the one in
PAL (Gao et al., 2023), where we use a function
to solve the problems. The function starts with a
Python docstring that repeats the question and then
a list of statements as reasoning steps.

B Detailed Hyperparameter Setting

Supervised Fine-Tuning We train the model for
40 epochs with the batch size of 48 and the max-
imum length of 1024.. For small models, we in-
crease the learning rate to 2e-5, and the number of
epoch for training MathQAMCQ to 100 epochs.

ReFT Warm-up For Galactica, we perform
warm-up for 2 epochs on GSM8K, SVAMP for
both N-CoT and P-CoT. In terms of MathQAMCQ,
we perform warm-up for 5 epochs on MathQAMCQ
N-CoT and 2 epochs on MathQAMCQ P-CoT. For
CodeLLAMA, we perform warm-up for 1 epoch
on SVAMP, 2 epochs on GSM8K, 5 epochs on
MathQAMCQ N-CoT and 2 epochs on MathQAMCQ
P-CoT. Specifically for MathQAnumeric, we perform
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warm-up for 10 epochs because this dataset is much
harder and the number of reasoning chains is longer
than other datasets. For small models, we the warm-
up period is 10 epochs for GSM8K and SVAMP
and is 40 epochs for MathQAMCQ

ReFT RL The maximum length for question is
set to 300, and the maximum length during sam-
pling is set to 700. The batch size is 32, which is
smaller than SFT due to extra memory consump-
tion of the value model. The number of updates per
RL step (i.e., ppo epoch) is set to 2 (Ziegler et al.,
2019). We do not employ any weight decay and
dropout following Ziegler et al. (2019). For small
models, we train for 700 epochs with the learning
rate of 3e-6 and the global batch size of 256.
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