Raiff1982 commited on
Commit
0a49a59
Β·
verified Β·
1 Parent(s): 105e4a4

Create helper.py

Browse files
Files changed (1) hide show
  1. helper.py +81 -0
helper.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments, pipeline
3
+ from datasets import load_dataset, Dataset
4
+ import json
5
+
6
+ class HuggingFaceHelper:
7
+ def __init__(self, model_path="./merged_model", dataset_path=None):
8
+ self.model_path = model_path
9
+ self.dataset_path = dataset_path
10
+ self.device = "cuda" if torch.cuda.is_available() else "cpu"
11
+
12
+ # Load tokenizer and model
13
+ self.tokenizer = AutoTokenizer.from_pretrained(model_path)
14
+ self.model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, device_map="auto")
15
+
16
+ def check_model_integrity(self):
17
+ print("πŸ” Checking model integrity...")
18
+ for param_tensor in self.model.state_dict():
19
+ print(f"{param_tensor}: {self.model.state_dict()[param_tensor].size()}")
20
+ print("βœ… Model integrity check completed.")
21
+
22
+ def test_pipeline(self):
23
+ try:
24
+ pipe = pipeline("text-generation", model=self.model, tokenizer=self.tokenizer)
25
+ output = pipe("What is the future of AI?", max_length=100)
26
+ print("βœ… Model successfully generates text:", output)
27
+ except Exception as e:
28
+ print(f"❌ Pipeline Error: {e}")
29
+
30
+ def load_dataset(self):
31
+ if self.dataset_path:
32
+ dataset = load_dataset("json", data_files=self.dataset_path, split="train")
33
+ return dataset.map(self.tokenize_function, batched=True)
34
+ else:
35
+ raise ValueError("Dataset path not provided.")
36
+
37
+ def tokenize_function(self, examples):
38
+ return self.tokenizer(examples["messages"], truncation=True, padding="max_length", max_length=512)
39
+
40
+ def fine_tune(self, output_dir="./fine_tuned_model", epochs=3, batch_size=4):
41
+ dataset = self.load_dataset()
42
+
43
+ training_args = TrainingArguments(
44
+ output_dir=output_dir,
45
+ evaluation_strategy="epoch",
46
+ save_strategy="epoch",
47
+ per_device_train_batch_size=batch_size,
48
+ per_device_eval_batch_size=batch_size,
49
+ num_train_epochs=epochs,
50
+ weight_decay=0.01,
51
+ logging_dir=f"{output_dir}/logs",
52
+ push_to_hub=False,
53
+ )
54
+
55
+ trainer = Trainer(
56
+ model=self.model,
57
+ args=training_args,
58
+ train_dataset=dataset,
59
+ tokenizer=self.tokenizer,
60
+ )
61
+
62
+ trainer.train()
63
+ self.save_model(output_dir)
64
+
65
+ def save_model(self, output_dir):
66
+ self.model.save_pretrained(output_dir)
67
+ self.tokenizer.save_pretrained(output_dir)
68
+ print(f"βœ… Model saved to {output_dir}")
69
+
70
+ def generate_response(self, prompt, max_length=200):
71
+ inputs = self.tokenizer(prompt, return_tensors="pt").to(self.device)
72
+ output = self.model.generate(**inputs, max_length=max_length)
73
+ return self.tokenizer.decode(output[0], skip_special_tokens=True)
74
+
75
+ # Example usage
76
+ if __name__ == "__main__":
77
+ helper = HuggingFaceHelper(model_path="./merged_model", dataset_path="codette_training_data_finetune_fixed.jsonl")
78
+ helper.check_model_integrity()
79
+ helper.test_pipeline()
80
+ helper.fine_tune(output_dir="./codette_finetuned", epochs=3, batch_size=4)
81
+ print(helper.generate_response("How will AI impact cybersecurity?"))