Spaces:
Paused
Paused
Create helper.py
Browse files
helper.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments, pipeline
|
3 |
+
from datasets import load_dataset, Dataset
|
4 |
+
import json
|
5 |
+
|
6 |
+
class HuggingFaceHelper:
|
7 |
+
def __init__(self, model_path="./merged_model", dataset_path=None):
|
8 |
+
self.model_path = model_path
|
9 |
+
self.dataset_path = dataset_path
|
10 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
+
|
12 |
+
# Load tokenizer and model
|
13 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
|
14 |
+
self.model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, device_map="auto")
|
15 |
+
|
16 |
+
def check_model_integrity(self):
|
17 |
+
print("π Checking model integrity...")
|
18 |
+
for param_tensor in self.model.state_dict():
|
19 |
+
print(f"{param_tensor}: {self.model.state_dict()[param_tensor].size()}")
|
20 |
+
print("β
Model integrity check completed.")
|
21 |
+
|
22 |
+
def test_pipeline(self):
|
23 |
+
try:
|
24 |
+
pipe = pipeline("text-generation", model=self.model, tokenizer=self.tokenizer)
|
25 |
+
output = pipe("What is the future of AI?", max_length=100)
|
26 |
+
print("β
Model successfully generates text:", output)
|
27 |
+
except Exception as e:
|
28 |
+
print(f"β Pipeline Error: {e}")
|
29 |
+
|
30 |
+
def load_dataset(self):
|
31 |
+
if self.dataset_path:
|
32 |
+
dataset = load_dataset("json", data_files=self.dataset_path, split="train")
|
33 |
+
return dataset.map(self.tokenize_function, batched=True)
|
34 |
+
else:
|
35 |
+
raise ValueError("Dataset path not provided.")
|
36 |
+
|
37 |
+
def tokenize_function(self, examples):
|
38 |
+
return self.tokenizer(examples["messages"], truncation=True, padding="max_length", max_length=512)
|
39 |
+
|
40 |
+
def fine_tune(self, output_dir="./fine_tuned_model", epochs=3, batch_size=4):
|
41 |
+
dataset = self.load_dataset()
|
42 |
+
|
43 |
+
training_args = TrainingArguments(
|
44 |
+
output_dir=output_dir,
|
45 |
+
evaluation_strategy="epoch",
|
46 |
+
save_strategy="epoch",
|
47 |
+
per_device_train_batch_size=batch_size,
|
48 |
+
per_device_eval_batch_size=batch_size,
|
49 |
+
num_train_epochs=epochs,
|
50 |
+
weight_decay=0.01,
|
51 |
+
logging_dir=f"{output_dir}/logs",
|
52 |
+
push_to_hub=False,
|
53 |
+
)
|
54 |
+
|
55 |
+
trainer = Trainer(
|
56 |
+
model=self.model,
|
57 |
+
args=training_args,
|
58 |
+
train_dataset=dataset,
|
59 |
+
tokenizer=self.tokenizer,
|
60 |
+
)
|
61 |
+
|
62 |
+
trainer.train()
|
63 |
+
self.save_model(output_dir)
|
64 |
+
|
65 |
+
def save_model(self, output_dir):
|
66 |
+
self.model.save_pretrained(output_dir)
|
67 |
+
self.tokenizer.save_pretrained(output_dir)
|
68 |
+
print(f"β
Model saved to {output_dir}")
|
69 |
+
|
70 |
+
def generate_response(self, prompt, max_length=200):
|
71 |
+
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.device)
|
72 |
+
output = self.model.generate(**inputs, max_length=max_length)
|
73 |
+
return self.tokenizer.decode(output[0], skip_special_tokens=True)
|
74 |
+
|
75 |
+
# Example usage
|
76 |
+
if __name__ == "__main__":
|
77 |
+
helper = HuggingFaceHelper(model_path="./merged_model", dataset_path="codette_training_data_finetune_fixed.jsonl")
|
78 |
+
helper.check_model_integrity()
|
79 |
+
helper.test_pipeline()
|
80 |
+
helper.fine_tune(output_dir="./codette_finetuned", epochs=3, batch_size=4)
|
81 |
+
print(helper.generate_response("How will AI impact cybersecurity?"))
|