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Abstract— This study aims at providing a conceptualized
framework for railway to realize the Digital Twin (DT) beyond
traditional structural modeling or information systems. First,
we deduce a generic formula that shows that DT estimates the
future states and decides actions beforehand. Then, based on
this formula, we design a generic framework called RailTwin.
The framework combines the insight of current states, the
foresight representing the prediction of the future states, and
the oversight based on the current and future state to enable
automation and actuation. The key enabler of this framework
to obtain these states is Artificial Intelligence (AI) technologies,
including Deep Learning, Transfer Learning, Reinforcement
Learning, and Explainable AI. We present a use case for
asset health inspection and monitoring through the proposed
framework.

I. INTRODUCTION

The railway requires a massive workforce for monitoring
and maintenance purposes [1]. Nowadays, the railway in-
dustry is shifting to automotive transportation by embracing
the Digital Twin technology. In an earlier period, DT gained
success in the production industry for graphical modeling
and data visualization [2]. The inclusion of Artificial Intel-
ligence and the Internet of Things (IoT) has allowed DT
to offer benefits beyond monitoring and simulation [3] [4].
AI technologies, such as deep learning and explainable AI
(XAI), offer self-awareness and automation in the railway
industry.

According to contemporary research, DT can benefit the
railway in several ways including real-time data visualization
[5], self-awareness [1], autonomous decision making [6],
remote monitoring, and smart asset inspection [7] using
AI and wireless sensing technology. The existing work has
realized DT for personal vehicles like self-driving car, solar
car, etc. for a specific purpose (e.g., energy monitoring).
However, in complex transportation industries like railway
or airport, the integration of DT is still at its early stage.

In particular the research objective our research is to
design a RailTwin framework to provide the environment
to monitor heavy freight cars. This allows us to develop the
data-driven models through AI-Inferencing for smart asset
health inspection. For this, we use detection datasets such as
Wheel Impact Load Detectors (WILD) and Train Inspection

Portal Systems (TIPS). Therefore, in this work, we aim to
provide a conceptual framework that fits the diverse needs
of the railway, in order to realize the railway DT beyond
typical modeling, monitoring, and information systems.

For this purpose, we include transfer learning, deep learn-
ing, and XAI to offer foresight to predict future outcomes
through predictive twin; and oversight to automate some
actuation by railway DT. The key contribution of this work is
two folds. i) To derive the mathematical formula to represent
a generic DT framework, and ii)To design a conceptualized
framework RailTwin for a multipurpose railway DT.

The rest of the section is organized as follows. In Section II
we discuss, compare, and summarize the existing work to
outline the problem and related requirements to design the
RailTwin framework. In Section III-A, we deduce the math-
ematical formula as a basis of the framework. In Section III-
B, we explain the RailTwin framework. A use case of the
proposed framework is detailed in Section IV. Finally, in
Section V, we conclude this study indicating the limitations
and our ongoing work.

II. RELATED WORK

As DT for the railway is still at its early adoption stage,
there are limited studies specifically on this topic. In this sec-
tion, first, we present the related work on DT for railway and
vehicles. Then, we discuss existing work on the autonomous
train. Finally, we summarize the gaps and requirements to
design a DT framework for the railway.

A. DT for railway and vehicles

The authors in [5] aim at providing a DT approach for
accurate monitoring and controlling the electric railway
power system. The main idea of this study is to collect
and visualize the real-time information of multiple trains
connected over a transportation network.

In [6], the authors aim to use real-time sensor data for
dynamic adaptation of a data-driven physics-based DT. Their
proposed approach decides which model better represents
the physical state of an asset (e.g., vehicle) to classify
real-time sensor data. On the other hand, The authors in [7]



aim at understanding the need for Integrated vehicle health
monitoring to support situation-based maintenance. They
outlined that the prime enablers of DT in product life cycles
are- AI, IoT, and Sensor Technology. Similar to [6], this
study also discussed the relationship between digital twin
and vehicle health management.

The study in [8] discusses the five-component based
architecture [9] for interactive optimization of self-driving
vehicles. Furthermore, the authors discuss the importance of
testing AI on a controlled testbed. The authors emphasize
that neural networks can be used on existing self-driving
vehicles to utilize the data for decision making.

In[10], DT is used to ensure the safety and health of
an electric vehicle motor to plan required service for
the engine. The authors employ UbiBot, an IoT solution
providing remote access and data visualization interface to
monitor environment data readings from IoT sensors. The
UbiBot acts as a temperature logger. The authors observed
that they could access and monitor ambient temperature,
light, humidity, etc., immediately through the UbiBot IoT
app.

TABLE I
COMPARISON OF TECHNOLOGY, USE CASE AND VEHICLE TYPE IN

EXISTING WORK

Author Technology Use case
Type
of
vehicle

Miad(2018)[5] 3D-modelling
Energy
optimization Railway

Michael(2020)[6]
Physics
based
modelling

vehicle
health
monitoring

Aircraft

Cordelia(2019)[7]
Condition
based
monitoring

Vehicle
health
monitoring

Any
vehicle

Ziran(2020)[1]

Physics
algorithms,
Distributed
network system

Traffic
monitoring

Connected
Vehicles

Anton(2019) [8]
Convolutional
Neural Network

Safety
automation

Self-driving
Car

Sakdirat(2019) [5]
BIM
3D modelling

Asset
maintainance Railway

Arkadiusz (2021) [11] IoT
Asset
maintainance Railway

Luchang(2021)[12]
Hybrid
modelling
using SVM

Energy
optimization

Solar
car

Suchitra(2019)[10]
Artificial
Neural
Network

Health
monitoring

Electric
vehicle

Ganistha(2021) [13]
AI
IoT

Health
monitoring,
Energy optimization

Smart
vehicle

In Table I, we provide a comparison of use case scenarios
and technologies proposed for DT of vehicle. It can be
observed from the table that most of the existing work
propose DT for personalized vehicles such as solar cars.
Additionally, the proposed models serve a certain purpose,
such as 3D modelling or energy optimization. By contrast,
very few studies propose DT for a complex and heavy duty
transportation system like railway or airport. A reason behind

this can be that virtual replication of a massive infrastructure
poses more challenges [13].

B. Autonomous Trains

As there is limited study on DT for the railway, we also
review recent studies on the autonomous train. The authors
in [13] provide a comprehensive overview of scopes,
challenges and existing trends of the autonomous train
(AT). They found that the data collection and modeling
technologies for autonomous vehicles and autonomous
trains are almost similar.

Another study [14] investigated the use of autonomous
trains (ATs) employing the baseline simulation model.
They concluded that the railway network’s capacity could
be greatly expanded. However, it is acknowledged that
the generated model requires further parameters, such
as weather conditions, noise metrics, and constraints of
processing.

The importance of a connected vehicle network to enable
real-time monitoring of multiple vehicles is discussed
in [15]. This research demonstrates the importance of
analyzing human factors (e.g., diver’s behavior) to extend
system capabilities to support driver-machine- interaction.

The authors in [16] evaluate the organizational hindrance
to the innovation of autonomous freight trains for large-
scale deployment. They found that the economic mechanism
significantly restricts innovation in rail freight transport and
autonomous train operation. Therefore, the policies need to
be in-lined with an innovative addition to railway transport.
Similarly, in [17], authors discuss legal issues associated
with an autonomous vehicle. They found it complicated to
develop a suitable framework for driver-less and human-
driven transportation systems. In addition, the survey of
autonomous trains emphasized categorizing the features
for driver-less, and driver-supported automation of train [13].

In one of our preceding works [18], the rail data from
Wheel Impact Load Detectors (WILD) is used to measure
the impact of the passing wheel to avoid rail brakes. A
centralized data-mining system detects the impact level of
moving wheels from the real-time data and notifies railway
staff to take proper action. The case study of this system has
been presented in another paper on our lifetime learning-
enabled modeling framework for DT. In our ongoing study,
we target modifying the data-mining approach for WILD
through applying advanced AI learning models, such as,
Transfer Learning, Deep Learning, and XAI for the Train
Inspection Portal Systems (TIPS) dataset. This is because
such AI learning models, unlike traditional AI models, don’t
require such rigorous and time consuming data engineering
to build a good classifier.

As the establishment of railway DT is still in progress, it
still requires reviewing certain concepts to get the complete
set of requirements. Based on our studies above, we found



Fig. 1. Mathematical representation of physical to digital state of railway.

some common issues and requirements for a railway DT
framework. Those are provided in the following section.

C. Issues and requirements

Table II provides the general issues and requirements for
railway DT framework. Considering the above requirements,
we deduce a mathematical formula and a generic framework
RailTwin, which is detailed in the following section.

TABLE II
ISSUES IN EXISTING WORK AND REQUIREMENTS TO ADDRESS THOSE

Issues Requirements

The load of railway industry
is vast and complex to monitor
and control

To include connected vehicle
network to enable vehicle-to-vehicle
and vehicle-to-cloud-to-vehicle
communication

The models for representing
or predicting all the physical
state of a vehicle is hard to
define.

To design a generic DT model
that can fit any kind of parameters.

Data unavailability to
train self-aware predictive model.
Feature extraction for each of the
components in a vehicle is difficult.

To include deep learning, transfer
learning models for AI inferencing .
To apply data augmentation as
data pre-processing

A DT without explainable
prediction model require further
analysis and human-intervention
to make the prediction usable for
decision making.

To update the AI inferencing
by adding
XAI into it

III. METHODOLOGY

A. Mathematical formula for RailTwin

We require a fundamental formula based on which we can
design the generic framework for railway DT. In this section,
we present the underlying formula to mimic the physical state
of the railway into the digital state. The Fig. III-A illustrates
the following steps.

1) Let us consider that in physical space, the state of a
railway is represented by S.

2) At initial time t0, we get a state, s0 at physical
space, where, s0 can be sensor reading, control action,
location, asset’s conditions, etc.

3) So, the physical state of railway is represented as S =
s0,s1,s2, ...sn at time T = t0, t1, t2, ..., tn
Where, tn represents the current time.

4) At digital space, we get observation o0 from s0 with
respective to time t0, where, o0 =

ds0
dt0

. The derivative is
used in this equation to reflect the change of physical
state (e.g., view, structure, etc.) to digital data (e.g.,
image, video, text, readings, etc.). For example, the
real-time video (O0) of assets present the change of
physical state (s0) at time t0. In this example, the
physical state (s0) is different view of the assets. For
instances, top-view of wheel brake.

5) The observation state of railway is represented as O =
o0,o1,o2, ...on at time T = t0, t1, t2, ..., tn

6) Now, at time tn, DT can forecast the observation on+1,
at time tn+1. Where, tn+1 represents future time.

7) So, the predictive state of digital Twin,P=
P(on+1|o1,o2,o3, ...,on). Here probability, P(On+1) is
a conditional probability given previous observations
o1,o2,o3, ...,on. One of the key opportunities of
digital twin technology is: It can estimate the state in
advance. The weather forecast is a suitable analogy
for this predictive state in digital space.

8) Again at current time tn, the railway DT can predict
actuation based on n observations as well as predicted
observations. The actuation allow the digital space to
act on or control the physical space. For instance, if
defect is found in any railway assets the DT can notify
the decision makers. Furthermore, RailTwin can also
enable or disable parts based on the condition of the
assets.

9) So, Actuation state, A = (P(An)|on−1,P) This repre-
sents another opportunity for DT. The DT can plan
and perform actuation automatically based on current
as well as upcoming observations.

10) So, the Physical state S of RailTwin can be represented
as a collection of Predictive State, P, Observational
state O, and Actuation state A.

11) Therefore, Digital state, D = O∪P∪A. So, we can
observe that a DT of railway can be represented as
a collection of observational state (insight), predictive
state(foresight), and actuation state (oversight).

B. Proposed Framework

This section presents a conceptualized framework
RailTwin to provide the DT of an asset such as a freight
car or a train. The DT framework of railway contains two
dimensions: the physical space, and the virtual space hosting
the twins of the assets, as well as a continuous bi-directional
communication flow between both dimensions. This is based
on the main building blocks explained in this section. These
blocks are essential to the successful operation of the digital
twin framework, and are based to a large extent on the
requirements analysis of the digital twin system presented
in [19]. We detail here the blocks used in our framework,
which are the data sensing, collection and storing; the
data pre-processing and AI inferencing; and the actuation



Fig. 2. Proposed RailTwin framework

and control of the physical asset. The composition of the
framework is shown in Fig. 2.

The physical space involves assets (e.g., train, freights,
rail-crossing, railway engines etc.), environment (e.g.,
weather, internal and external temperature of vehicle, etc.),
infrastructure (e.g., railway building, automated doors,
etc.), driver, passenger, process (e.g., health-inspection,
scheduling, etc.) and operator(e.g., scheduler, safety
monitoring officer, railway health inspector).

The bi-directional communication between the two
dimensions of the framework, as well as the communication
among the virtual twins, is maintained over a connected
vehicle network. The reason behind involving a connected
vehicle network is to enable vehicle-to-vehicle(v2v), vehicle-
to-cloud(v2c) and cloud-to-vehicle(c2v) communication.
For example, the DT framework inspects the defect of
multiple freights simultaneously, based on the condition
of one train, another train decides to change the route.
The dedicated short-range communication (DSRC) ensures
reliable Communication between the high-speed transports
and its surroundings [1].

The twins of the railway at physical and virtual space
interact through multi-modal interactions. Therefore, the
communication direction is bi-directional in the framework.
Both twins can control each other. For instance, the DT
control a switch in it’s physical twin (real-life railway),
and an operator in the physical space can control the
analytic and decision of DT to avoid system errors. The DT
automatically actuates the RailTwin based on the outcomes
of the AI inferencing component explained further in this
section. As part of the bi-directional flow between the
physical and virtual spaces, the data sensing involves the
flow of data from the physical space towards the virtual
one, to establish the building process of the virtual twin,

and to ensure that this virtual replica remains consistent
with its physical counterpart over time.

The data sensing process involves various sensing tools
and technologies to capture observations from the physical
space. Heterogeneous sensors like humidity, positioning,
camera, stereo video recorder, radar, drone, LIDAR (Light
Detection and Ranging) are used to sense physical space.
For an example, LIDAR is used to generate an environment
map to enable augmented reality and measure distance. For
real-life railway operation the sensing technology requires
to capture data of two groups [18], i) vehicle side data (like,
heavy freight car), ii)track side data.

The data collection process collects heterogeneous pa-
rameters from the sensing process. The parameters include:
situational parameter(e.g., vehicle mass, driver’s glance, pas-
senger’s movement, passenger’s expression etc), geometric
parameters(e.g., structural patters, driver’s angle, depth, etc.),
health parameters(e.g., rust, carks, creases, fading, etc. ), Be-
havioral parameters (e.g., smoky exhausts, thrums, abnormal
vibration, barks etc.), environmental parameters (e.g., humid-
ity, temperature, air index, etc.), structural parameter(e.g.,
length of rail-cross, material of structure, etc.), location
parameter (e.g., vehicle position, gps location, longitudinal
position, etc.), energy parameter (e.g., battery life, date of
manufacturing, fuel consumption, etc.), action parameter
(e.g., disable a function, start/stop a process, etc.), physics
parameter (e.g., speed, torque, rotation, curve, etc.). For
railway operation these data are as in Table III.

The information/status of these parameters passed as
a data-flow for data-prepossessing as well as for data
storing. Some of the DTs deal with raw data, and others
depend on pre-processed data. Data is pre-processed
in several steps, including cleaning, standardization,
data labeling, and data augmentation. The data storing
process also stores pre-processed data to create a rule-



TABLE III
EXAMPLE OF DATA FROM CPR RAILWAY DATABASE

Data Item Data type Group
WILD site information nominal data Vehicle side
WILD reading numeric data Vehicle side
TIPS image data Track side

base, knowledgebase database or generate ground truth.
The data pre-processing and storing is one of the crucial
part of predictive DT as creating DT is a data-driven process.

The AI-inferencing process relies on the data pre-
processing and data storing. For example, a deep-learning
model depends on data augmentation to deal with smaller
sample sizes. AI inferencing is the heart of a railway. This
process includes the following AI components.

• The machine learning models mainly deals with clas-
sifying, clustering, and estimating the parameters for
which a huge number of historical data are available,
and feature extraction are feasible.

• The deep learning models are used to perform unsu-
pervised classification directly from data, without any
feature extraction.

• The transfer learning models are employed for building
models on parameters that lack a sufficient number of
observations. A pre-trained model with a large number
of data is retrained and re-tuned in this case.

• The reinforcement learning enables actuation and au-
tomation by understanding the state of a particular
parameter and performing an action based on this.
The reinforcement learning model mainly provides the
actuation twins that support automation in control. For
example, turns on the alarm, turns off a switch, etc.

• The explainable AI is a new addition to the DT that
further advances the decision support features of DT.

The AI inferencing provides the information twin
representing observational stateinsight, predictive twin
representing predictive state(foresight) ahead, and actuation
twin that includes actuation states(oversight) for controlling
the physical railway. Overall, the railway DT includes a
collection of these twins, which we have already seen in
the mathematical formula in the previous section. A railway
DT offers data analysis, decision support, automation, 3D
modeling, simulation, and visualization in virtual space.

In an extended work of this paper we are developing the
AI-inference by employing explainable deep learning model
to detect defect from TIPS data. The deep learning part
inclues Convolutional neural network(CNN) model. The
CNN model passes each pixel of a part’s image to the input
layer. After that, these pixels are passed through a selected
number of hidden steps. The convolution aims to perform
element-wise multiplication of image pixels to recognize
the image features (e.g., color intensity, pixel similarity)
anywhere in the image. The CNN network scans a part of

the image array and multiplies it into a filter. Finally, all the
layers are connected to the next layer, known as the fully
connected layer. Finally, the CNN predicts defects at the
output layer. To explain the prediction, we applied the LIME
algorithm after the output layer. The algorithm modifies
single data points based on the feature values. The LIME
algorithm split the image outputs into superpixels, where
patches of the part images have similar visual features:
color or brightness. A use-case of this framework has been
detailed in the next section.

IV. A USE CASE: SELF-INSPECTION OF RAILWAY ASSETS

Structural defect diagnosis is a common task to improve
railway assets’ reliability and sustainability (e.g., rail wheels,
rail crossings, etc.) This section presents a use case for
diagnosing defective parts in the railway by employing
RailTwin framework. The steps of the RailTwin framework
are listed below.

• The physical space of this use case includes parts of the
train, including- brake, wheel, gate, etc.

• Then, various states from this physical space can be
sensed through visual sensing through the camera. In
practice, a drone camera captures and sends real-time
videos of various railway parts. Here, the views of the
assets are the physical states.

• The structural parameters can be the image of parts and
health parameters (e.g., defects and normal image of
railway components) are collected through visual sens-
ing for defect identification. These images are compared
to the observation states.

• After that, data-prepossessing is performed to make
this data usable for a defect classifier. In reality, the
operational environment of the railway keeps changing
and leverages new data. Therefore, sometimes the data
is insufficient and imbalanced for training a defect clas-
sifier. Data augmentation can be performed by rotating
and zooming the collected image data.

• These data can be stored in cloud database to provide
historical data, ground truth, etc. For experimental pur-
poses, Tensorflow data pipeline can be created for stor-
ing the data for building a sophisticated input pipeline
for reusable data. The image model pipeline gathers data
from files in a distributed file system, apply random
modifications to each image, and combine randomly
selected images into a batch for training the model.

• Then, at the AI-inference stage, the framework builds
a deep-learning model to classify defected and normal
parts of the rail. The Local Interpretable Model Agnos-
tic Explanations(LIME) algorithm is used to interpret
the prediction. The vehicle area which is carrying the
defects is identified by marking the spot—this aids to
automate the smart inspection on defect detection in
railway industry. The Fig. 3 illustrates defected area
identified by LIME algorithm for an image which has
been predicted as a defected one by the CNN model.



Fig. 3. Example from the experiment of our ongoing work.

• The outcome of the AI-inferencing of the DT will sup-
port decision making. For example, the railway digital
twin decides which part needs replacement or repairing.
The decisions are notified to the users in-order to enable
replacement or repairing at the physical space. Hence,
this process represents the action state.

V. CONCLUSION AND FUTURE WORK

This research proposes RailTwin, a conceptual framework
for railway digital twin. We present this framework for
railway operation through DT with it’s mathematical basis.
Furthermore, we demonstrate some examples, from our on-
going research, to explain the framework. As DT for railway
is a recent concept, our RailTwin framework is as of now
still limited and can mainly detail the Data Collection and AI
inferencing process. However, these two processes are core
of the railway DT framework to support the key research
objective here, which is the smart railway health inspection.
In our ongoing studies, we further advance this research
work to extend the framework, as well as to evaluate the
framework for asset defect detection and monitoring using
TIPS images.
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