Spaces:
Runtime error
Runtime error
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from typing import List, Tuple | |
import fitz # PyMuPDF | |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
# Placeholder for the app's state | |
class MyApp: | |
def __init__(self) -> None: | |
self.documents = [] | |
self.load_pdf("THEDIA1.pdf") | |
def load_pdf(self, file_path: str) -> None: | |
"""Extracts text from a PDF file and stores it in the app's documents.""" | |
doc = fitz.open(file_path) | |
self.documents = [] | |
for page_num in range(len(doc)): | |
page = doc[page_num] | |
text = page.get_text() | |
self.documents.append({"page": page_num + 1, "content": text}) | |
print("PDF processed successfully!") | |
def search_documents(self, query: str, k: int = 3) -> List[str]: | |
"""Searches for relevant documents containing the query string.""" | |
results = [doc["content"] for doc in self.documents if query.lower() in doc["content"].lower()] | |
return results[:k] if results else ["No relevant documents found."] | |
app = MyApp() | |
def respond( | |
message: str, | |
history: List[Tuple[str, str]], | |
system_message: str, | |
max_tokens: int, | |
temperature: float, | |
top_p: float, | |
): | |
system_message = "You are a knowledgeable DBT coach. Use relevant documents to guide users through DBT exercises and provide helpful information." | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
# RAG - Retrieve relevant documents | |
retrieved_docs = app.search_documents(message) | |
context = "\n".join(retrieved_docs) | |
messages.append({"role": "system", "content": "Relevant documents: " + context}) | |
response = "" | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
demo = gr.Blocks() | |
with demo: | |
gr.Markdown("π§ββοΈ **Dialectical Behaviour Therapy**") | |
gr.Markdown( | |
"Disclaimer: This chatbot is just for testing. It is based on a DBT exercise book that is publicly available. " | |
"This is just a prototype of DBT excercise assistant, and the use of this chatbot is at your own responsibility." | |
) | |
chatbot = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a knowledgeable DBT coach. Use relevant documents to guide users through DBT exercises and provide helpful information.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), | |
], | |
examples=[ | |
["I feel overwhelmed with work."], | |
["Can you guide me through a quick meditation?"], | |
["How do I stop worrying about things I can't control?"], | |
["What are some DBT skills for managing anxiety?"], | |
["Can you explain mindfulness in DBT?"], | |
["What is radical acceptance?"] | |
], | |
title='DBT Coach π§ββοΈ' | |
) | |
if __name__ == "__main__": | |
demo.launch() |