Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -19,6 +19,10 @@ import glob
|
|
19 |
from datetime import datetime
|
20 |
from PIL import Image
|
21 |
|
|
|
|
|
|
|
|
|
22 |
#import os
|
23 |
#cache_dir = '/workspace/hf_cache'
|
24 |
|
@@ -33,44 +37,10 @@ os.makedirs(OUTPUT_DIR, exist_ok=True)
|
|
33 |
|
34 |
# Model configurations
|
35 |
MODEL_CONFIGS = {
|
36 |
-
|
37 |
-
|
38 |
-
"
|
39 |
-
|
40 |
-
},
|
41 |
-
"Stable Diffusion 3.5": {
|
42 |
-
"repo_id": "stabilityai/stable-diffusion-3.5-large",
|
43 |
-
"pipeline_class": StableDiffusion3Pipeline,
|
44 |
-
# "cache_dir" : cache_dir
|
45 |
-
},
|
46 |
-
"PixArt": {
|
47 |
-
"repo_id": "PixArt-alpha/PixArt-Sigma-XL-2-1024-MS",
|
48 |
-
"pipeline_class": PixArtSigmaPipeline,
|
49 |
-
# "cache_dir" : cache_dir
|
50 |
-
},
|
51 |
-
"SANA": {
|
52 |
-
"repo_id": "Efficient-Large-Model/Sana_1600M_1024px_BF16_diffusers",
|
53 |
-
"pipeline_class": SanaPipeline,
|
54 |
-
# "cache_dir" : cache_dir
|
55 |
-
},
|
56 |
-
"AuraFlow": {
|
57 |
-
"repo_id": "fal/AuraFlow",
|
58 |
-
"pipeline_class": AuraFlowPipeline,
|
59 |
-
# "cache_dir" : cache_dir
|
60 |
-
},
|
61 |
-
"Kandinsky": {
|
62 |
-
"repo_id": "kandinsky-community/kandinsky-3",
|
63 |
-
"pipeline_class": Kandinsky3Pipeline,
|
64 |
-
#"cache_dir" : cache_dir
|
65 |
-
},
|
66 |
-
"Hunyuan": {
|
67 |
-
"repo_id": "Tencent-Hunyuan/HunyuanDiT-Diffusers",
|
68 |
-
"pipeline_class": HunyuanDiTPipeline,
|
69 |
-
# "cache_dir" : cache_dir
|
70 |
-
},
|
71 |
-
"Lumina": {
|
72 |
-
"repo_id": "Alpha-VLLM/Lumina-Next-SFT-diffusers",
|
73 |
-
"pipeline_class": LuminaText2ImgPipeline,
|
74 |
# "cache_dir" : cache_dir
|
75 |
}
|
76 |
|
@@ -227,6 +197,9 @@ def generate_image(
|
|
227 |
print(f"Generating image with {model_name}...")
|
228 |
# progress(0.3, desc=f"Generating image with {model_name}...")
|
229 |
|
|
|
|
|
|
|
230 |
image = pipe(
|
231 |
prompt=prompt,
|
232 |
negative_prompt=negative_prompt,
|
|
|
19 |
from datetime import datetime
|
20 |
from PIL import Image
|
21 |
|
22 |
+
from onediffusion.diffusion.pipelines.onediffusion import OneDiffusionPipeline
|
23 |
+
from onediffusion.models.denoiser.nextdit import NextDiT
|
24 |
+
from onediffusion.dataset.utils import get_closest_ratio, ASPECT_RATIO_512
|
25 |
+
|
26 |
#import os
|
27 |
#cache_dir = '/workspace/hf_cache'
|
28 |
|
|
|
37 |
|
38 |
# Model configurations
|
39 |
MODEL_CONFIGS = {
|
40 |
+
|
41 |
+
"OneDiffusion": {
|
42 |
+
"repo_id": "lehduong/OneDiffusion",
|
43 |
+
"pipeline_class": OneDiffusionPipeline,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
# "cache_dir" : cache_dir
|
45 |
}
|
46 |
|
|
|
197 |
print(f"Generating image with {model_name}...")
|
198 |
# progress(0.3, desc=f"Generating image with {model_name}...")
|
199 |
|
200 |
+
if model_name == "OneDiffusion":
|
201 |
+
prompt = "[[text2image]] " + prompt
|
202 |
+
|
203 |
image = pipe(
|
204 |
prompt=prompt,
|
205 |
negative_prompt=negative_prompt,
|