Spaces:
Running
on
Zero
Running
on
Zero
RageshAntony
commited on
new changes
Browse files
app.py
CHANGED
@@ -2,12 +2,10 @@ import gradio as gr
|
|
2 |
import numpy as np
|
3 |
import random
|
4 |
import torch
|
5 |
-
import torch.multiprocessing as mp
|
6 |
-
from torch.cuda.amp import autocast
|
7 |
from diffusers import (
|
8 |
DiffusionPipeline, StableDiffusion3Pipeline, FluxPipeline, PixArtSigmaPipeline,
|
9 |
AuraFlowPipeline, Kandinsky3Pipeline, HunyuanDiTPipeline,
|
10 |
-
LuminaText2ImgPipeline
|
11 |
)
|
12 |
import spaces
|
13 |
import gc
|
@@ -20,108 +18,169 @@ import time
|
|
20 |
import glob
|
21 |
from datetime import datetime
|
22 |
from PIL import Image
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
from typing import Optional, List
|
28 |
-
|
29 |
-
@dataclass
|
30 |
-
class MultiGPUConfig:
|
31 |
-
count: int = 2 # Number of GPUs to request
|
32 |
-
memory: int = 16 # Memory per GPU in GB
|
33 |
-
duration: int = 3600 # Duration in seconds
|
34 |
-
|
35 |
-
class SpacesMultiGPU:
|
36 |
-
def __init__(self, config: Optional[MultiGPUConfig] = None):
|
37 |
-
self.config = config or MultiGPUConfig()
|
38 |
-
|
39 |
-
def __call__(self, func):
|
40 |
-
# Apply multiple GPU decorators
|
41 |
-
decorated_func = func
|
42 |
-
for gpu_idx in range(self.config.count):
|
43 |
-
decorated_func = spaces.GPU(
|
44 |
-
device=gpu_idx, # Specify which GPU to request
|
45 |
-
memory=self.config.memory,
|
46 |
-
duration=self.config.duration
|
47 |
-
)(decorated_func)
|
48 |
-
return decorated_func
|
49 |
-
|
50 |
-
# Example usage in your generation code
|
51 |
-
gpu_config = MultiGPUConfig(
|
52 |
-
count=2, # Request 2 GPUs
|
53 |
-
duration=400 # 1 hour duration
|
54 |
-
)
|
55 |
|
56 |
# Constants
|
57 |
MAX_SEED = np.iinfo(np.int32).max
|
58 |
MAX_IMAGE_SIZE = 1024
|
59 |
-
|
|
|
60 |
OUTPUT_DIR = "generated_images"
|
61 |
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
62 |
|
63 |
-
# Get available GPU devices
|
64 |
-
AVAILABLE_GPUS = list(range(torch.cuda.device_count()))
|
65 |
-
print(f"Available GPUs: {AVAILABLE_GPUS}")
|
66 |
-
|
67 |
# Model configurations
|
68 |
MODEL_CONFIGS = {
|
69 |
"FLUX": {
|
70 |
"repo_id": "black-forest-labs/FLUX.1-dev",
|
71 |
-
"pipeline_class": FluxPipeline
|
|
|
72 |
},
|
73 |
"Stable Diffusion 3.5": {
|
74 |
"repo_id": "stabilityai/stable-diffusion-3.5-large",
|
75 |
-
"pipeline_class": StableDiffusion3Pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
}
|
77 |
-
}
|
78 |
|
79 |
-
# GPU allocation queue and model cache
|
80 |
-
gpu_queue = Queue()
|
81 |
-
for gpu_id in AVAILABLE_GPUS:
|
82 |
-
gpu_queue.put(gpu_id)
|
83 |
|
84 |
-
|
|
|
|
|
|
|
85 |
model_locks = {model_name: threading.Lock() for model_name in MODEL_CONFIGS.keys()}
|
86 |
|
87 |
-
def get_next_available_gpu():
|
88 |
-
"""Get the next available GPU from the queue"""
|
89 |
-
gpu_id = gpu_queue.get()
|
90 |
-
return gpu_id
|
91 |
|
92 |
-
def
|
93 |
-
"""
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
config = MODEL_CONFIGS[model_name]
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
110 |
return pipe
|
111 |
|
|
|
112 |
def save_generated_image(image, model_name, prompt):
|
113 |
"""Save generated image with timestamp and model name"""
|
114 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
|
|
115 |
prompt_part = "".join(c for c in prompt[:30] if c.isalnum() or c in (' ', '-', '_')).strip()
|
116 |
filename = f"{timestamp}_{model_name}_{prompt_part}.png"
|
117 |
filepath = os.path.join(OUTPUT_DIR, filename)
|
118 |
image.save(filepath)
|
119 |
return filepath
|
120 |
|
|
|
121 |
def get_generated_images():
|
122 |
"""Get list of generated images with their details"""
|
123 |
files = glob.glob(os.path.join(OUTPUT_DIR, "*.png"))
|
124 |
-
files.sort(key=os.path.getctime, reverse=True)
|
125 |
return [
|
126 |
{
|
127 |
"path": f,
|
@@ -132,25 +191,35 @@ def get_generated_images():
|
|
132 |
for f in files
|
133 |
]
|
134 |
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
image = pipe(
|
155 |
prompt=prompt,
|
156 |
negative_prompt=negative_prompt,
|
@@ -160,53 +229,22 @@ def generate_image_on_gpu(args):
|
|
160 |
height=height,
|
161 |
generator=generator,
|
162 |
).images[0]
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
# Prepare generation tasks
|
180 |
-
tasks = []
|
181 |
-
for model_name in MODEL_CONFIGS.keys():
|
182 |
-
current_seed = random.randint(0, MAX_SEED) if randomize_seed else seed
|
183 |
-
tasks.append((
|
184 |
-
model_name, prompt, negative_prompt, current_seed,
|
185 |
-
width, height, guidance_scale, num_inference_steps
|
186 |
-
))
|
187 |
-
|
188 |
-
# Run generation in parallel using thread pool
|
189 |
-
with ThreadPoolExecutor(max_workers=len(AVAILABLE_GPUS)) as executor:
|
190 |
-
future_to_model = {
|
191 |
-
executor.submit(generate_image_on_gpu, task): idx
|
192 |
-
for idx, task in enumerate(tasks)
|
193 |
-
}
|
194 |
-
|
195 |
-
for future in as_completed(future_to_model):
|
196 |
-
idx = future_to_model[future]
|
197 |
-
try:
|
198 |
-
image, used_seed = future.result()
|
199 |
-
outputs[idx * 2] = image
|
200 |
-
outputs[idx * 2 + 1] = used_seed
|
201 |
-
yield outputs + [None]
|
202 |
-
except Exception as e:
|
203 |
-
print(f"Generation failed for model {idx}: {str(e)}")
|
204 |
-
outputs[idx * 2] = None
|
205 |
-
outputs[idx * 2 + 1] = None
|
206 |
-
|
207 |
-
# Update gallery after all generations complete
|
208 |
-
gallery_images = update_gallery()
|
209 |
-
return outputs
|
210 |
|
211 |
# Gradio Interface
|
212 |
css = """
|
@@ -218,8 +256,8 @@ css = """
|
|
218 |
|
219 |
with gr.Blocks(css=css) as demo:
|
220 |
with gr.Column(elem_id="col-container"):
|
221 |
-
gr.Markdown(
|
222 |
-
|
223 |
with gr.Row():
|
224 |
prompt = gr.Text(
|
225 |
label="Prompt",
|
@@ -229,14 +267,14 @@ with gr.Blocks(css=css) as demo:
|
|
229 |
container=False,
|
230 |
)
|
231 |
run_button = gr.Button("Generate", scale=0, variant="primary")
|
232 |
-
|
233 |
with gr.Accordion("Advanced Settings", open=False):
|
234 |
negative_prompt = gr.Text(
|
235 |
label="Negative prompt",
|
236 |
max_lines=1,
|
237 |
placeholder="Enter a negative prompt",
|
238 |
)
|
239 |
-
|
240 |
seed = gr.Slider(
|
241 |
label="Seed",
|
242 |
minimum=0,
|
@@ -244,9 +282,9 @@ with gr.Blocks(css=css) as demo:
|
|
244 |
step=1,
|
245 |
value=0,
|
246 |
)
|
247 |
-
|
248 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
249 |
-
|
250 |
with gr.Row():
|
251 |
width = gr.Slider(
|
252 |
label="Width",
|
@@ -262,7 +300,7 @@ with gr.Blocks(css=css) as demo:
|
|
262 |
step=32,
|
263 |
value=1024,
|
264 |
)
|
265 |
-
|
266 |
with gr.Row():
|
267 |
guidance_scale = gr.Slider(
|
268 |
label="Guidance scale",
|
@@ -278,7 +316,9 @@ with gr.Blocks(css=css) as demo:
|
|
278 |
step=1,
|
279 |
value=40,
|
280 |
)
|
281 |
-
|
|
|
|
|
282 |
with gr.Row():
|
283 |
with gr.Column(scale=2):
|
284 |
with gr.Tabs() as tabs:
|
@@ -287,18 +327,21 @@ with gr.Blocks(css=css) as demo:
|
|
287 |
for model_name in MODEL_CONFIGS.keys():
|
288 |
with gr.Tab(model_name):
|
289 |
results[model_name] = gr.Image(label=f"{model_name} Result")
|
290 |
-
seeds[model_name] = gr.Number(label="Seed used", visible=
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
|
|
|
|
|
|
302 |
|
303 |
def update_gallery():
|
304 |
"""Update the file gallery"""
|
@@ -308,6 +351,44 @@ with gr.Blocks(css=css) as demo:
|
|
308 |
for f in files
|
309 |
]
|
310 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
311 |
output_components = []
|
312 |
for model_name in MODEL_CONFIGS.keys():
|
313 |
output_components.extend([results[model_name], seeds[model_name]])
|
@@ -340,6 +421,4 @@ with gr.Blocks(css=css) as demo:
|
|
340 |
)
|
341 |
|
342 |
if __name__ == "__main__":
|
343 |
-
|
344 |
-
mp.set_start_method('spawn', force=True)
|
345 |
-
demo.launch()
|
|
|
2 |
import numpy as np
|
3 |
import random
|
4 |
import torch
|
|
|
|
|
5 |
from diffusers import (
|
6 |
DiffusionPipeline, StableDiffusion3Pipeline, FluxPipeline, PixArtSigmaPipeline,
|
7 |
AuraFlowPipeline, Kandinsky3Pipeline, HunyuanDiTPipeline,
|
8 |
+
LuminaText2ImgPipeline, SanaPipeline
|
9 |
)
|
10 |
import spaces
|
11 |
import gc
|
|
|
18 |
import glob
|
19 |
from datetime import datetime
|
20 |
from PIL import Image
|
21 |
+
|
22 |
+
#import os
|
23 |
+
#cache_dir = '/workspace/hf_cache'
|
24 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
# Constants
|
27 |
MAX_SEED = np.iinfo(np.int32).max
|
28 |
MAX_IMAGE_SIZE = 1024
|
29 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
30 |
+
TORCH_DTYPE = torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
31 |
OUTPUT_DIR = "generated_images"
|
32 |
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
33 |
|
|
|
|
|
|
|
|
|
34 |
# Model configurations
|
35 |
MODEL_CONFIGS = {
|
36 |
"FLUX": {
|
37 |
"repo_id": "black-forest-labs/FLUX.1-dev",
|
38 |
+
"pipeline_class": FluxPipeline,
|
39 |
+
#"cache_dir" : cache_dir
|
40 |
},
|
41 |
"Stable Diffusion 3.5": {
|
42 |
"repo_id": "stabilityai/stable-diffusion-3.5-large",
|
43 |
+
"pipeline_class": StableDiffusion3Pipeline,
|
44 |
+
#"cache_dir" : cache_dir
|
45 |
+
},
|
46 |
+
"PixArt": {
|
47 |
+
"repo_id": "PixArt-alpha/PixArt-Sigma-XL-2-1024-MS",
|
48 |
+
"pipeline_class": PixArtSigmaPipeline,
|
49 |
+
#"cache_dir" : cache_dir
|
50 |
+
},
|
51 |
+
"SANA": {
|
52 |
+
"repo_id": "Efficient-Large-Model/Sana_1600M_1024px_BF16_diffusers",
|
53 |
+
"pipeline_class": SanaPipeline,
|
54 |
+
#"cache_dir" : cache_dir
|
55 |
+
},
|
56 |
+
"AuraFlow": {
|
57 |
+
"repo_id": "fal/AuraFlow",
|
58 |
+
"pipeline_class": AuraFlowPipeline,
|
59 |
+
#"cache_dir" : cache_dir
|
60 |
+
},
|
61 |
+
"Kandinsky": {
|
62 |
+
"repo_id": "kandinsky-community/kandinsky-3",
|
63 |
+
"pipeline_class": Kandinsky3Pipeline,
|
64 |
+
#"cache_dir" : cache_dir
|
65 |
+
},
|
66 |
+
"Hunyuan": {
|
67 |
+
"repo_id": "Tencent-Hunyuan/HunyuanDiT-Diffusers",
|
68 |
+
"pipeline_class": HunyuanDiTPipeline,
|
69 |
+
#"cache_dir" : cache_dir
|
70 |
+
},
|
71 |
+
"Lumina": {
|
72 |
+
"repo_id": "Alpha-VLLM/Lumina-Next-SFT-diffusers",
|
73 |
+
"pipeline_class": LuminaText2ImgPipeline,
|
74 |
+
#"cache_dir" : cache_dir
|
75 |
}
|
|
|
76 |
|
|
|
|
|
|
|
|
|
77 |
|
78 |
+
}
|
79 |
+
|
80 |
+
# Dictionary to store model pipelines
|
81 |
+
pipes = {}
|
82 |
model_locks = {model_name: threading.Lock() for model_name in MODEL_CONFIGS.keys()}
|
83 |
|
|
|
|
|
|
|
|
|
84 |
|
85 |
+
def get_process_memory():
|
86 |
+
"""Get memory usage of current process in GB"""
|
87 |
+
process = psutil.Process(os.getpid())
|
88 |
+
return process.memory_info().rss / 1024 / 1024 / 1024
|
89 |
+
|
90 |
+
|
91 |
+
def clear_torch_cache():
|
92 |
+
"""Clear PyTorch's CUDA cache"""
|
93 |
+
if torch.cuda.is_available():
|
94 |
+
torch.cuda.empty_cache()
|
95 |
+
torch.cuda.ipc_collect()
|
96 |
+
|
97 |
+
|
98 |
+
def remove_cache_dir(model_name):
|
99 |
+
"""Remove the model's cache directory"""
|
100 |
+
cache_dir = Path.home() / '.cache' / 'huggingface' / 'diffusers' / MODEL_CONFIGS[model_name]['repo_id'].replace('/',
|
101 |
+
'--')
|
102 |
+
if cache_dir.exists():
|
103 |
+
shutil.rmtree(cache_dir, ignore_errors=True)
|
104 |
+
|
105 |
+
|
106 |
+
def deep_cleanup(model_name, pipe):
|
107 |
+
"""Perform deep cleanup of model resources"""
|
108 |
+
try:
|
109 |
+
# 1. Move model to CPU first (helps prevent CUDA memory fragmentation)
|
110 |
+
if hasattr(pipe, 'to'):
|
111 |
+
pipe.to('cpu')
|
112 |
+
|
113 |
+
# 2. Delete all model components explicitly
|
114 |
+
for attr_name in list(pipe.__dict__.keys()):
|
115 |
+
if hasattr(pipe, attr_name):
|
116 |
+
delattr(pipe, attr_name)
|
117 |
|
118 |
+
# 3. Remove from pipes dictionary
|
119 |
+
if model_name in pipes:
|
120 |
+
del pipes[model_name]
|
121 |
+
|
122 |
+
# 4. Clear CUDA cache
|
123 |
+
clear_torch_cache()
|
124 |
+
|
125 |
+
# 5. Run garbage collection multiple times
|
126 |
+
for _ in range(3):
|
127 |
+
gc.collect()
|
128 |
+
|
129 |
+
# 6. Remove cached files
|
130 |
+
remove_cache_dir(model_name)
|
131 |
+
|
132 |
+
# 7. Additional CUDA cleanup if available
|
133 |
+
if torch.cuda.is_available():
|
134 |
+
torch.cuda.synchronize()
|
135 |
+
|
136 |
+
# 8. Wait a small amount of time to ensure cleanup
|
137 |
+
time.sleep(1)
|
138 |
+
|
139 |
+
except Exception as e:
|
140 |
+
print(f"Error during cleanup of {model_name}: {str(e)}")
|
141 |
+
|
142 |
+
finally:
|
143 |
+
# Final garbage collection
|
144 |
+
gc.collect()
|
145 |
+
clear_torch_cache()
|
146 |
+
|
147 |
+
|
148 |
+
def load_pipeline(model_name):
|
149 |
+
"""Load model pipeline with memory tracking"""
|
150 |
+
initial_memory = get_process_memory()
|
151 |
config = MODEL_CONFIGS[model_name]
|
152 |
+
|
153 |
+
pipe = config["pipeline_class"].from_pretrained(
|
154 |
+
config["repo_id"],
|
155 |
+
torch_dtype=TORCH_DTYPE,
|
156 |
+
cache_dir=cache_dir
|
157 |
+
)
|
158 |
+
pipe = pipe.to(DEVICE)
|
159 |
+
|
160 |
+
if hasattr(pipe, 'enable_model_cpu_offload'):
|
161 |
+
pipe.enable_model_cpu_offload()
|
162 |
+
|
163 |
+
final_memory = get_process_memory()
|
164 |
+
print(f"Memory used by {model_name}: {final_memory - initial_memory:.2f} GB")
|
165 |
+
|
166 |
return pipe
|
167 |
|
168 |
+
|
169 |
def save_generated_image(image, model_name, prompt):
|
170 |
"""Save generated image with timestamp and model name"""
|
171 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
172 |
+
# Create sanitized filename from prompt (first 30 chars)
|
173 |
prompt_part = "".join(c for c in prompt[:30] if c.isalnum() or c in (' ', '-', '_')).strip()
|
174 |
filename = f"{timestamp}_{model_name}_{prompt_part}.png"
|
175 |
filepath = os.path.join(OUTPUT_DIR, filename)
|
176 |
image.save(filepath)
|
177 |
return filepath
|
178 |
|
179 |
+
|
180 |
def get_generated_images():
|
181 |
"""Get list of generated images with their details"""
|
182 |
files = glob.glob(os.path.join(OUTPUT_DIR, "*.png"))
|
183 |
+
files.sort(key=os.path.getctime, reverse=True) # Sort by creation time
|
184 |
return [
|
185 |
{
|
186 |
"path": f,
|
|
|
191 |
for f in files
|
192 |
]
|
193 |
|
194 |
+
|
195 |
+
def generate_image(
|
196 |
+
model_name,
|
197 |
+
prompt,
|
198 |
+
negative_prompt="",
|
199 |
+
seed=42,
|
200 |
+
randomize_seed=False,
|
201 |
+
width=1024,
|
202 |
+
height=1024,
|
203 |
+
guidance_scale=4.5,
|
204 |
+
num_inference_steps=40,
|
205 |
+
progress=gr.Progress(track_tqdm=True)
|
206 |
+
):
|
207 |
+
with model_locks[model_name]:
|
208 |
+
try:
|
209 |
+
# progress(0, desc=f"Loading {model_name} model...")
|
210 |
+
|
211 |
+
if model_name not in pipes:
|
212 |
+
pipes[model_name] = load_pipeline(model_name)
|
213 |
+
|
214 |
+
pipe = pipes[model_name]
|
215 |
+
|
216 |
+
if randomize_seed:
|
217 |
+
seed = random.randint(0, MAX_SEED)
|
218 |
+
|
219 |
+
generator = torch.Generator(DEVICE).manual_seed(seed)
|
220 |
+
print(f"Generating image with {model_name}...")
|
221 |
+
# progress(0.3, desc=f"Generating image with {model_name}...")
|
222 |
+
|
223 |
image = pipe(
|
224 |
prompt=prompt,
|
225 |
negative_prompt=negative_prompt,
|
|
|
229 |
height=height,
|
230 |
generator=generator,
|
231 |
).images[0]
|
232 |
+
|
233 |
+
filepath = save_generated_image(image, model_name, prompt)
|
234 |
+
print(f"Saved image to: {filepath}")
|
235 |
+
|
236 |
+
# progress(0.9, desc=f"Cleaning up {model_name} resources...")
|
237 |
+
# deep_cleanup(model_name, pipe)
|
238 |
+
|
239 |
+
# progress(1.0, desc=f"Generation complete with {model_name}")
|
240 |
+
return image, seed
|
241 |
+
|
242 |
+
except Exception as e:
|
243 |
+
print(f"Error with {model_name}: {str(e)}")
|
244 |
+
if model_name in pipes:
|
245 |
+
deep_cleanup(model_name, pipes[model_name])
|
246 |
+
raise e
|
247 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
248 |
|
249 |
# Gradio Interface
|
250 |
css = """
|
|
|
256 |
|
257 |
with gr.Blocks(css=css) as demo:
|
258 |
with gr.Column(elem_id="col-container"):
|
259 |
+
gr.Markdown("# Multi-Model Image Generation")
|
260 |
+
|
261 |
with gr.Row():
|
262 |
prompt = gr.Text(
|
263 |
label="Prompt",
|
|
|
267 |
container=False,
|
268 |
)
|
269 |
run_button = gr.Button("Generate", scale=0, variant="primary")
|
270 |
+
|
271 |
with gr.Accordion("Advanced Settings", open=False):
|
272 |
negative_prompt = gr.Text(
|
273 |
label="Negative prompt",
|
274 |
max_lines=1,
|
275 |
placeholder="Enter a negative prompt",
|
276 |
)
|
277 |
+
|
278 |
seed = gr.Slider(
|
279 |
label="Seed",
|
280 |
minimum=0,
|
|
|
282 |
step=1,
|
283 |
value=0,
|
284 |
)
|
285 |
+
|
286 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
287 |
+
|
288 |
with gr.Row():
|
289 |
width = gr.Slider(
|
290 |
label="Width",
|
|
|
300 |
step=32,
|
301 |
value=1024,
|
302 |
)
|
303 |
+
|
304 |
with gr.Row():
|
305 |
guidance_scale = gr.Slider(
|
306 |
label="Guidance scale",
|
|
|
316 |
step=1,
|
317 |
value=40,
|
318 |
)
|
319 |
+
|
320 |
+
memory_indicator = gr.Markdown("Current memory usage: 0 GB")
|
321 |
+
|
322 |
with gr.Row():
|
323 |
with gr.Column(scale=2):
|
324 |
with gr.Tabs() as tabs:
|
|
|
327 |
for model_name in MODEL_CONFIGS.keys():
|
328 |
with gr.Tab(model_name):
|
329 |
results[model_name] = gr.Image(label=f"{model_name} Result")
|
330 |
+
seeds[model_name] = gr.Number(label="Seed used", visible=True)
|
331 |
+
with gr.Column(scale=1):
|
332 |
+
gr.Markdown("### Generated Images")
|
333 |
+
file_gallery = gr.Gallery(
|
334 |
+
label="Generated Images",
|
335 |
+
show_label=False,
|
336 |
+
elem_id="file_gallery",
|
337 |
+
columns=3,
|
338 |
+
height=800,
|
339 |
+
visible=True
|
340 |
+
)
|
341 |
+
refresh_button = gr.Button("Refresh Gallery")
|
342 |
+
|
343 |
+
|
344 |
+
|
345 |
|
346 |
def update_gallery():
|
347 |
"""Update the file gallery"""
|
|
|
351 |
for f in files
|
352 |
]
|
353 |
|
354 |
+
|
355 |
+
@spaces.GPU(duration=600)
|
356 |
+
def generate_all(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,
|
357 |
+
progress=gr.Progress()):
|
358 |
+
outputs = [None] * (len(MODEL_CONFIGS) * 2)
|
359 |
+
for idx, model_name in enumerate(MODEL_CONFIGS.keys()):
|
360 |
+
try:
|
361 |
+
# Display progress for the specific model
|
362 |
+
# progress(0, desc=f"Starting generation for {model_name}...")
|
363 |
+
print(f"IMAGE GENERATING {model_name} ")
|
364 |
+
image, used_seed = generate_image(
|
365 |
+
model_name, prompt, negative_prompt, seed,
|
366 |
+
randomize_seed, width, height, guidance_scale,
|
367 |
+
num_inference_steps, progress
|
368 |
+
)
|
369 |
+
print(f"IMAGE GENERATIED {model_name} ")
|
370 |
+
# Update the respective model's tab with the generated image
|
371 |
+
# results[model_name].update(image)
|
372 |
+
# seeds[model_name].update(used_seed)
|
373 |
+
outputs[idx * 2] = image # Image slot
|
374 |
+
outputs[idx * 2 + 1] = seed # Seed slot
|
375 |
+
# outputs.extend([image, used_seed])
|
376 |
+
# Add intermediate results to progress * (len(all_outputs) - len(all_outputs))
|
377 |
+
print("YELID")
|
378 |
+
yield outputs + [None]
|
379 |
+
|
380 |
+
|
381 |
+
except Exception as e:
|
382 |
+
print(f"Error generating with {model_name}: {str(e)}")
|
383 |
+
outputs[idx * 2] = None
|
384 |
+
outputs[idx * 2 + 1] = None
|
385 |
+
|
386 |
+
# Update the gallery after generation
|
387 |
+
gallery_images = update_gallery()
|
388 |
+
# file_gallery.update(value=gallery_images)
|
389 |
+
return outputs
|
390 |
+
|
391 |
+
|
392 |
output_components = []
|
393 |
for model_name in MODEL_CONFIGS.keys():
|
394 |
output_components.extend([results[model_name], seeds[model_name]])
|
|
|
421 |
)
|
422 |
|
423 |
if __name__ == "__main__":
|
424 |
+
demo.launch(server_name='0.0.0.0')
|
|
|
|