Spaces:
Running
on
Zero
Running
on
Zero
multi image gen
Browse files
app.py
CHANGED
@@ -1,27 +1,69 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
-
|
5 |
-
import spaces
|
6 |
-
from diffusers import DiffusionPipeline
|
7 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
|
10 |
-
model_repo_id = "stabilityai/stable-diffusion-3.5-large"
|
11 |
-
|
12 |
-
if torch.cuda.is_available():
|
13 |
-
torch_dtype = torch.bfloat16
|
14 |
-
else:
|
15 |
-
torch_dtype = torch.float32
|
16 |
-
|
17 |
-
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
18 |
-
pipe = pipe.to(device)
|
19 |
-
|
20 |
MAX_SEED = np.iinfo(np.int32).max
|
21 |
MAX_IMAGE_SIZE = 1024
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
prompt,
|
26 |
negative_prompt="",
|
27 |
seed=42,
|
@@ -30,13 +72,23 @@ def infer(
|
|
30 |
height=1024,
|
31 |
guidance_scale=4.5,
|
32 |
num_inference_steps=40,
|
33 |
-
progress=gr.Progress(track_tqdm=True)
|
34 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
if randomize_seed:
|
36 |
seed = random.randint(0, MAX_SEED)
|
37 |
-
|
38 |
-
generator = torch.Generator().manual_seed(seed)
|
39 |
-
|
|
|
|
|
40 |
image = pipe(
|
41 |
prompt=prompt,
|
42 |
negative_prompt=negative_prompt,
|
@@ -46,25 +98,22 @@ def infer(
|
|
46 |
height=height,
|
47 |
generator=generator,
|
48 |
).images[0]
|
49 |
-
|
|
|
50 |
return image, seed
|
51 |
|
52 |
-
|
53 |
-
examples = [
|
54 |
-
"A capybara wearing a suit holding a sign that reads Hello World",
|
55 |
-
]
|
56 |
-
|
57 |
css = """
|
58 |
#col-container {
|
59 |
margin: 0 auto;
|
60 |
-
max-width:
|
61 |
}
|
62 |
"""
|
63 |
|
64 |
with gr.Blocks(css=css) as demo:
|
65 |
with gr.Column(elem_id="col-container"):
|
66 |
-
gr.Markdown("
|
67 |
-
|
68 |
with gr.Row():
|
69 |
prompt = gr.Text(
|
70 |
label="Prompt",
|
@@ -73,19 +122,15 @@ with gr.Blocks(css=css) as demo:
|
|
73 |
placeholder="Enter your prompt",
|
74 |
container=False,
|
75 |
)
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
result = gr.Image(label="Result", show_label=False)
|
80 |
-
|
81 |
with gr.Accordion("Advanced Settings", open=False):
|
82 |
negative_prompt = gr.Text(
|
83 |
label="Negative prompt",
|
84 |
max_lines=1,
|
85 |
placeholder="Enter a negative prompt",
|
86 |
-
visible=False,
|
87 |
)
|
88 |
-
|
89 |
seed = gr.Slider(
|
90 |
label="Seed",
|
91 |
minimum=0,
|
@@ -93,18 +138,17 @@ with gr.Blocks(css=css) as demo:
|
|
93 |
step=1,
|
94 |
value=0,
|
95 |
)
|
96 |
-
|
97 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
98 |
-
|
99 |
with gr.Row():
|
100 |
width = gr.Slider(
|
101 |
label="Width",
|
102 |
minimum=512,
|
103 |
maximum=MAX_IMAGE_SIZE,
|
104 |
step=32,
|
105 |
-
value=1024,
|
106 |
)
|
107 |
-
|
108 |
height = gr.Slider(
|
109 |
label="Height",
|
110 |
minimum=512,
|
@@ -112,7 +156,7 @@ with gr.Blocks(css=css) as demo:
|
|
112 |
step=32,
|
113 |
value=1024,
|
114 |
)
|
115 |
-
|
116 |
with gr.Row():
|
117 |
guidance_scale = gr.Slider(
|
118 |
label="Guidance scale",
|
@@ -121,19 +165,52 @@ with gr.Blocks(css=css) as demo:
|
|
121 |
step=0.1,
|
122 |
value=4.5,
|
123 |
)
|
124 |
-
|
125 |
num_inference_steps = gr.Slider(
|
126 |
label="Number of inference steps",
|
127 |
minimum=1,
|
128 |
maximum=50,
|
129 |
step=1,
|
130 |
-
value=40,
|
131 |
)
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
inputs=[
|
138 |
prompt,
|
139 |
negative_prompt,
|
@@ -144,8 +221,8 @@ with gr.Blocks(css=css) as demo:
|
|
144 |
guidance_scale,
|
145 |
num_inference_steps,
|
146 |
],
|
147 |
-
outputs=
|
148 |
)
|
149 |
|
150 |
if __name__ == "__main__":
|
151 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
|
|
|
|
|
|
4 |
import torch
|
5 |
+
from diffusers import (
|
6 |
+
DiffusionPipeline, FluxPipeline, PixArtSigmaPipeline,
|
7 |
+
AuraFlowPipeline, Kandinsky3Pipeline, HunyuanDiTPipeline,
|
8 |
+
LuminaText2ImgPipeline
|
9 |
+
)
|
10 |
+
import spaces
|
11 |
|
12 |
+
# Constants
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
MAX_SEED = np.iinfo(np.int32).max
|
14 |
MAX_IMAGE_SIZE = 1024
|
15 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
+
TORCH_DTYPE = torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
17 |
+
|
18 |
+
# Model configurations
|
19 |
+
MODEL_CONFIGS = {
|
20 |
+
"Stable Diffusion 3.5": {
|
21 |
+
"repo_id": "stabilityai/stable-diffusion-3.5-large",
|
22 |
+
"pipeline_class": DiffusionPipeline
|
23 |
+
},
|
24 |
+
"FLUX": {
|
25 |
+
"repo_id": "black-forest-labs/FLUX.1-dev",
|
26 |
+
"pipeline_class": FluxPipeline
|
27 |
+
},
|
28 |
+
"PixArt": {
|
29 |
+
"repo_id": "PixArt-alpha/PixArt-Sigma-XL-2-1024-MS",
|
30 |
+
"pipeline_class": PixArtSigmaPipeline
|
31 |
+
},
|
32 |
+
"AuraFlow": {
|
33 |
+
"repo_id": "fal/AuraFlow",
|
34 |
+
"pipeline_class": AuraFlowPipeline
|
35 |
+
},
|
36 |
+
"Kandinsky": {
|
37 |
+
"repo_id": "kandinsky-community/kandinsky-3",
|
38 |
+
"pipeline_class": Kandinsky3Pipeline
|
39 |
+
},
|
40 |
+
"Hunyuan": {
|
41 |
+
"repo_id": "Tencent-Hunyuan/HunyuanDiT-Diffusers",
|
42 |
+
"pipeline_class": HunyuanDiTPipeline
|
43 |
+
},
|
44 |
+
"Lumina": {
|
45 |
+
"repo_id": "Alpha-VLLM/Lumina-Next-SFT-diffusers",
|
46 |
+
"pipeline_class": LuminaText2ImgPipeline
|
47 |
+
}
|
48 |
+
}
|
49 |
|
50 |
+
# Initialize model pipelines
|
51 |
+
pipes = {}
|
52 |
+
|
53 |
+
def load_pipeline(model_name):
|
54 |
+
config = MODEL_CONFIGS[model_name]
|
55 |
+
pipe = config["pipeline_class"].from_pretrained(
|
56 |
+
config["repo_id"],
|
57 |
+
torch_dtype=TORCH_DTYPE
|
58 |
+
)
|
59 |
+
pipe = pipe.to(DEVICE)
|
60 |
+
if hasattr(pipe, 'enable_model_cpu_offload'):
|
61 |
+
pipe.enable_model_cpu_offload()
|
62 |
+
return pipe
|
63 |
+
|
64 |
+
@spaces.GPU(duration=180)
|
65 |
+
def generate_image(
|
66 |
+
model_name,
|
67 |
prompt,
|
68 |
negative_prompt="",
|
69 |
seed=42,
|
|
|
72 |
height=1024,
|
73 |
guidance_scale=4.5,
|
74 |
num_inference_steps=40,
|
75 |
+
progress=gr.Progress(track_tqdm=True)
|
76 |
):
|
77 |
+
progress(0, desc=f"Loading {model_name} model...")
|
78 |
+
|
79 |
+
# Load model if not already loaded
|
80 |
+
if model_name not in pipes:
|
81 |
+
pipes[model_name] = load_pipeline(model_name)
|
82 |
+
|
83 |
+
pipe = pipes[model_name]
|
84 |
+
|
85 |
if randomize_seed:
|
86 |
seed = random.randint(0, MAX_SEED)
|
87 |
+
|
88 |
+
generator = torch.Generator(DEVICE).manual_seed(seed)
|
89 |
+
|
90 |
+
progress(0.3, desc=f"Generating image with {model_name}...")
|
91 |
+
|
92 |
image = pipe(
|
93 |
prompt=prompt,
|
94 |
negative_prompt=negative_prompt,
|
|
|
98 |
height=height,
|
99 |
generator=generator,
|
100 |
).images[0]
|
101 |
+
|
102 |
+
progress(1.0, desc=f"Generation complete with {model_name}")
|
103 |
return image, seed
|
104 |
|
105 |
+
# Gradio Interface
|
|
|
|
|
|
|
|
|
106 |
css = """
|
107 |
#col-container {
|
108 |
margin: 0 auto;
|
109 |
+
max-width: 1024px;
|
110 |
}
|
111 |
"""
|
112 |
|
113 |
with gr.Blocks(css=css) as demo:
|
114 |
with gr.Column(elem_id="col-container"):
|
115 |
+
gr.Markdown("# Multi-Model Image Generation")
|
116 |
+
|
117 |
with gr.Row():
|
118 |
prompt = gr.Text(
|
119 |
label="Prompt",
|
|
|
122 |
placeholder="Enter your prompt",
|
123 |
container=False,
|
124 |
)
|
125 |
+
run_button = gr.Button("Generate", scale=0, variant="primary")
|
126 |
+
|
|
|
|
|
|
|
127 |
with gr.Accordion("Advanced Settings", open=False):
|
128 |
negative_prompt = gr.Text(
|
129 |
label="Negative prompt",
|
130 |
max_lines=1,
|
131 |
placeholder="Enter a negative prompt",
|
|
|
132 |
)
|
133 |
+
|
134 |
seed = gr.Slider(
|
135 |
label="Seed",
|
136 |
minimum=0,
|
|
|
138 |
step=1,
|
139 |
value=0,
|
140 |
)
|
141 |
+
|
142 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
143 |
+
|
144 |
with gr.Row():
|
145 |
width = gr.Slider(
|
146 |
label="Width",
|
147 |
minimum=512,
|
148 |
maximum=MAX_IMAGE_SIZE,
|
149 |
step=32,
|
150 |
+
value=1024,
|
151 |
)
|
|
|
152 |
height = gr.Slider(
|
153 |
label="Height",
|
154 |
minimum=512,
|
|
|
156 |
step=32,
|
157 |
value=1024,
|
158 |
)
|
159 |
+
|
160 |
with gr.Row():
|
161 |
guidance_scale = gr.Slider(
|
162 |
label="Guidance scale",
|
|
|
165 |
step=0.1,
|
166 |
value=4.5,
|
167 |
)
|
|
|
168 |
num_inference_steps = gr.Slider(
|
169 |
label="Number of inference steps",
|
170 |
minimum=1,
|
171 |
maximum=50,
|
172 |
step=1,
|
173 |
+
value=40,
|
174 |
)
|
175 |
+
|
176 |
+
# Create tabs for each model
|
177 |
+
with gr.Tabs() as tabs:
|
178 |
+
results = {}
|
179 |
+
seeds = {}
|
180 |
+
for model_name in MODEL_CONFIGS.keys():
|
181 |
+
with gr.Tab(model_name):
|
182 |
+
results[model_name] = gr.Image(label=f"{model_name} Result")
|
183 |
+
seeds[model_name] = gr.Number(label="Seed used", visible=False)
|
184 |
+
|
185 |
+
examples = [
|
186 |
+
"A capybara wearing a suit holding a sign that reads Hello World",
|
187 |
+
"A serene landscape with mountains and a lake at sunset",
|
188 |
+
]
|
189 |
+
gr.Examples(examples=examples, inputs=[prompt])
|
190 |
+
|
191 |
+
# Handle generation for each model
|
192 |
+
def generate_all(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress()):
|
193 |
+
outputs = []
|
194 |
+
for model_name in MODEL_CONFIGS.keys():
|
195 |
+
try:
|
196 |
+
image, used_seed = generate_image(
|
197 |
+
model_name, prompt, negative_prompt, seed,
|
198 |
+
randomize_seed, width, height, guidance_scale,
|
199 |
+
num_inference_steps, progress
|
200 |
+
)
|
201 |
+
outputs.extend([image, used_seed])
|
202 |
+
except Exception as e:
|
203 |
+
outputs.extend([None, None])
|
204 |
+
print(f"Error generating with {model_name}: {str(e)}")
|
205 |
+
return outputs
|
206 |
+
|
207 |
+
# Set up the generation trigger
|
208 |
+
output_components = []
|
209 |
+
for model_name in MODEL_CONFIGS.keys():
|
210 |
+
output_components.extend([results[model_name], seeds[model_name]])
|
211 |
+
|
212 |
+
run_button.click(
|
213 |
+
fn=generate_all,
|
214 |
inputs=[
|
215 |
prompt,
|
216 |
negative_prompt,
|
|
|
221 |
guidance_scale,
|
222 |
num_inference_steps,
|
223 |
],
|
224 |
+
outputs=output_components,
|
225 |
)
|
226 |
|
227 |
if __name__ == "__main__":
|
228 |
+
demo.launch()
|