Spaces:
Running
Running
changes
Browse files- app.py +108 -0
- test_audios/.DS_Store +0 -0
app.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import whisperx
|
3 |
+
import os
|
4 |
+
import tempfile
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
|
7 |
+
# Load environment variables
|
8 |
+
load_dotenv()
|
9 |
+
hf_token = os.getenv("hf_token")
|
10 |
+
|
11 |
+
# Model config
|
12 |
+
device = "cpu"
|
13 |
+
batch_size = 16
|
14 |
+
compute_type = "int8"
|
15 |
+
|
16 |
+
# Load main model
|
17 |
+
model = whisperx.load_model("large-v3", device, compute_type=compute_type)
|
18 |
+
|
19 |
+
title = "ποΈ Multilingual Audio Processor"
|
20 |
+
description = "Upload an audio file and select whether to transcribe, align words, or identify speakers (Powered by WhisperX)."
|
21 |
+
|
22 |
+
def clean_alignment(result):
|
23 |
+
cleaned_segments = []
|
24 |
+
for seg in result.get("segments", []):
|
25 |
+
cleaned_words = []
|
26 |
+
for word in seg.get("words", []):
|
27 |
+
cleaned_words.append({
|
28 |
+
"word": word["word"],
|
29 |
+
"start": float(word["start"]),
|
30 |
+
"end": float(word["end"]),
|
31 |
+
"score": float(word["score"])
|
32 |
+
})
|
33 |
+
cleaned_segments.append({
|
34 |
+
"text": seg["text"],
|
35 |
+
"start": float(seg["start"]),
|
36 |
+
"end": float(seg["end"]),
|
37 |
+
"words": cleaned_words
|
38 |
+
})
|
39 |
+
return {"segments": cleaned_segments}
|
40 |
+
|
41 |
+
def process_audio(audio_path, transcribe=True, align=False, diarize=False):
|
42 |
+
transcript_output = ""
|
43 |
+
align_output = {}
|
44 |
+
diarize_output = ""
|
45 |
+
|
46 |
+
audio = whisperx.load_audio(audio_path)
|
47 |
+
result = None
|
48 |
+
|
49 |
+
# Step 1: Transcribe
|
50 |
+
# if transcribe:
|
51 |
+
result = model.transcribe(audio, batch_size=batch_size)
|
52 |
+
transcript_output = " ".join(seg["text"] for seg in result["segments"])
|
53 |
+
|
54 |
+
# Step 2: Align
|
55 |
+
if align and result:
|
56 |
+
model_a, metadata = whisperx.load_align_model(language_code=result["language"], device=device)
|
57 |
+
result = whisperx.align(result["segments"], model_a, metadata, audio, device)
|
58 |
+
align_output = clean_alignment(result)
|
59 |
+
|
60 |
+
# Step 3: Diarization
|
61 |
+
if diarize and result:
|
62 |
+
diarize_model = whisperx.diarize.DiarizationPipeline(
|
63 |
+
use_auth_token=hf_token,
|
64 |
+
device=device
|
65 |
+
)
|
66 |
+
diarize_segments = diarize_model(audio)
|
67 |
+
result = whisperx.assign_word_speakers(diarize_segments, result)
|
68 |
+
diarize_output = [
|
69 |
+
{
|
70 |
+
"start": float(seg["start"]),
|
71 |
+
"end": float(seg["end"]),
|
72 |
+
"speaker": seg.get("speaker", "SPEAKER_00"),
|
73 |
+
"text": seg["text"]
|
74 |
+
} for seg in result["segments"]
|
75 |
+
]
|
76 |
+
|
77 |
+
return transcript_output , align_output or {}, diarize_output or "No diarization."
|
78 |
+
|
79 |
+
with gr.Blocks(title=title, theme=gr.themes.Default(), analytics_enabled=True) as demo:
|
80 |
+
gr.Markdown(f"<h1 style='text-align: center;font-size: 40px;'>{title}</h1>")
|
81 |
+
gr.Markdown(f"<p style='text-align: center; font-size: 16px;'>{description}</p>")
|
82 |
+
with gr.Row():
|
83 |
+
with gr.Column(scale=1):
|
84 |
+
audio_input = gr.Audio(type="filepath", label="Upload Audio")
|
85 |
+
transcribe_checkbox = gr.Markdown("β
Transcription will always be performed.")
|
86 |
+
align_checkbox = gr.Checkbox(label="Align")
|
87 |
+
diarize_checkbox = gr.Checkbox(label="Diarize")
|
88 |
+
gr.Markdown("### <span style='font-size: 18px;'>π§ Try Sample Audio</span>")
|
89 |
+
gr.Examples(
|
90 |
+
examples=[[f"test_audios/{audio_file}"] for audio_file in os.listdir("test_audios") if audio_file.endswith(('.mp3', '.wav'))],
|
91 |
+
inputs=[audio_input],
|
92 |
+
label=""
|
93 |
+
)
|
94 |
+
with gr.Column(scale=2):
|
95 |
+
transcript_output = gr.Textbox(label="π Transcript", lines=10, interactive=False)
|
96 |
+
alignment_output = gr.JSON(label="π§ Word Alignment")
|
97 |
+
diarization_output = gr.JSON(label="π£οΈ Speaker Diarization")
|
98 |
+
with gr.Row():
|
99 |
+
process_button = gr.Button("Process")
|
100 |
+
|
101 |
+
process_button.click(
|
102 |
+
fn=process_audio,
|
103 |
+
inputs=[audio_input, transcribe_checkbox, align_checkbox, diarize_checkbox],
|
104 |
+
outputs=[transcript_output, alignment_output, diarization_output]
|
105 |
+
)
|
106 |
+
|
107 |
+
if __name__ == "__main__":
|
108 |
+
demo.launch(share=True)
|
test_audios/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|