Ikea-Scraper / image_extractor.py
RSHVR's picture
Upload 3 files
8474ed7 verified
raw
history blame
14.3 kB
"""
Image Extractor Module
This module extracts high-resolution product images and measurements from web pages.
Designed primarily for IKEA product pages but can be extended for other sites.
"""
import uuid
import re
import os
import logging
from typing import Dict, Any, Optional, List, Tuple
from dataclasses import dataclass, field
import requests
from bs4 import BeautifulSoup
from PIL import Image
from io import BytesIO
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
@dataclass
class ImageInfo:
"""Class for storing image information"""
url: str
alt: str = ""
type: str = "unknown"
path: Optional[str] = None
id: Optional[str] = None
@dataclass
class ExtractionResult:
"""Class for storing the results of a webpage extraction"""
request_id: str
images: Dict[str, ImageInfo] = field(default_factory=dict)
measurements: Dict[str, str] = field(default_factory=dict)
materials: Dict[str, str] = field(default_factory=dict)
output_dir: Optional[str] = None
def to_dict(self) -> Dict[str, Any]:
"""Convert the extraction result to a dictionary"""
images_dict = {
img_id: {
"id": img_id,
"url": img_info.url,
"alt": img_info.alt,
"type": img_info.type,
"path": img_info.path
} for img_id, img_info in self.images.items()
}
return {
"request_id": self.request_id,
"images": images_dict,
"measurements": self.measurements,
"materials": self.materials,
"output_dir": self.output_dir
}
class SrcsetParser:
"""Helper class for parsing srcset attributes from HTML img tags"""
@staticmethod
def parse_srcset(srcset: str) -> List[Dict[str, Any]]:
"""
Parse a srcset attribute into a structured list of image URLs and descriptors.
Args:
srcset: The srcset attribute from an img tag
Returns:
List of dictionaries containing parsed srcset components
"""
if not srcset:
return []
results = []
srcset_parts = [part.strip() for part in srcset.split(',')]
for part in srcset_parts:
parts = part.split()
if len(parts) < 2:
continue
url = parts[0]
descriptor = parts[1]
try:
width = int(re.search(r'\d+', descriptor).group(0)) if re.search(r'\d+', descriptor) else 0
results.append({"url": url, "descriptor": descriptor, "width": width})
except (AttributeError, ValueError):
continue
return results
@classmethod
def extract_f_xl_image(cls, srcset: str) -> Optional[str]:
"""
Extract specifically the image URL with f=xl 900w from a srcset attribute.
Args:
srcset: The srcset attribute from an img tag
Returns:
The URL with f=xl 900w descriptor or None if not found
"""
if not srcset:
return None
srcset_entries = cls.parse_srcset(srcset)
# First, look for f=xl with 900w
for entry in srcset_entries:
if "f=xl" in entry["url"] and entry["descriptor"] == "900w":
return entry["url"]
# If not found, try any 900w image
for entry in srcset_entries:
if entry["descriptor"] == "900w":
return entry["url"]
# Finally, fall back to highest resolution
if srcset_entries:
srcset_entries.sort(key=lambda x: x["width"], reverse=True)
return srcset_entries[0]["url"]
return None
class ImageDownloader:
"""Helper class for downloading images"""
@staticmethod
def download_image(image_url: str, save_path: str) -> Optional[str]:
"""
Download an image from URL and save it to disk.
Args:
image_url: URL of the image to download
save_path: Path where the image will be saved
Returns:
The path to the saved image or None if download failed
"""
try:
# Create directory if it doesn't exist
os.makedirs(os.path.dirname(save_path), exist_ok=True)
# Get the image content
response = requests.get(image_url, timeout=30)
response.raise_for_status()
# Save the image
img = Image.open(BytesIO(response.content))
img.save(save_path)
logger.info(f"Image saved to {save_path}")
return save_path
except requests.exceptions.RequestException as e:
logger.error(f"Error downloading image: {e}")
return None
except IOError as e:
logger.error(f"Error saving image: {e}")
return None
except Exception as e:
logger.error(f"Unexpected error while downloading image: {e}")
return None
class WebPageFetcher:
"""Helper class for fetching web pages"""
DEFAULT_HEADERS = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36"
}
@classmethod
def fetch_page(cls, url: str) -> Tuple[str, BeautifulSoup]:
"""
Fetch a web page and return its content as text and parsed BeautifulSoup.
Args:
url: The URL to fetch
Returns:
Tuple containing (raw_html, parsed_soup)
Raises:
requests.exceptions.RequestException: If the request fails
"""
logger.info(f"Fetching page: {url}")
response = requests.get(url, headers=cls.DEFAULT_HEADERS, timeout=30)
response.raise_for_status()
html = response.text
# Parse HTML with BeautifulSoup
soup = BeautifulSoup(html, 'html.parser')
return html, soup
class ProductExtractor:
"""Main class for extracting product information"""
def __init__(self):
self.srcset_parser = SrcsetParser()
self.image_downloader = ImageDownloader()
def extract_images_from_url(self, url: str) -> ExtractionResult:
"""
Extract images with preference for f=xl 900w versions from a URL.
Args:
url: The URL to extract images from
Returns:
ExtractionResult object with extracted image information
Raises:
requests.exceptions.RequestException: If the request fails
ValueError: If the HTML cannot be parsed correctly
"""
try:
logger.info(f"Extracting images from: {url}")
# Fetch the HTML content
_, soup = WebPageFetcher.fetch_page(url)
# Generate a UUID for this request
request_uuid = str(uuid.uuid4())
logger.info(f"Generated request ID: {request_uuid}")
# Initialize result
result = ExtractionResult(request_id=request_uuid)
# Extract images
self._extract_main_product_image(soup, result, request_uuid)
self._extract_measurement_image(soup, result, request_uuid)
# If no specific images found, try general approach
if not result.images:
self._extract_images_general_approach(soup, result, request_uuid)
# Extract measurements
self._extract_measurements(soup, result)
logger.info(f"Total images found: {len(result.images)}")
logger.info(f"Measurements extracted: {result.measurements}")
return result
except requests.exceptions.RequestException as e:
logger.error(f"Error fetching URL: {e}")
raise
except Exception as e:
logger.error(f"Error extracting images: {e}")
raise
def _extract_main_product_image(self, soup: BeautifulSoup, result: ExtractionResult, request_uuid: str) -> None:
"""Extract the main product image"""
main_image_element = soup.select_one('div[data-type="MAIN_PRODUCT_IMAGE"] img.pip-image')
if main_image_element and main_image_element.get('srcset'):
srcset = main_image_element.get('srcset')
target_url = self.srcset_parser.extract_f_xl_image(srcset)
if target_url:
logger.info(f"Found main product image: {target_url}")
image_id = f"{request_uuid}-main"
result.images[image_id] = ImageInfo(
id=image_id,
url=target_url,
alt=main_image_element.get('alt', ''),
type="main"
)
def _extract_measurement_image(self, soup: BeautifulSoup, result: ExtractionResult, request_uuid: str) -> None:
"""Extract the measurement illustration image"""
measurement_image_element = soup.select_one('div[data-type="MEASUREMENT_ILLUSTRATION"] img.pip-image')
if measurement_image_element and measurement_image_element.get('srcset'):
srcset = measurement_image_element.get('srcset')
target_url = self.srcset_parser.extract_f_xl_image(srcset)
if target_url:
logger.info(f"Found measurement image: {target_url}")
image_id = f"{request_uuid}-measurement"
result.images[image_id] = ImageInfo(
id=image_id,
url=target_url,
alt=measurement_image_element.get('alt', ''),
type="measurement"
)
def _extract_images_general_approach(self, soup: BeautifulSoup, result: ExtractionResult, request_uuid: str) -> None:
"""Extract images using a more general approach"""
logger.info("No specific images found, trying general approach...")
for i, img in enumerate(soup.select('img[srcset]')):
srcset = img.get('srcset')
target_url = self.srcset_parser.extract_f_xl_image(srcset)
if target_url:
img_type = self._determine_image_type(img)
logger.info(f"Found {img_type} image: {target_url}")
image_id = f"{request_uuid}-{img_type}-{i}"
result.images[image_id] = ImageInfo(
id=image_id,
url=target_url,
alt=img.get('alt', ''),
type=img_type
)
def _determine_image_type(self, img_element: BeautifulSoup) -> str:
"""Determine the type of image based on its context"""
parent_html = str(img_element.parent.parent)
if "MAIN_PRODUCT_IMAGE" in parent_html or "main" in parent_html.lower():
return "main"
elif "MEASUREMENT" in parent_html or "measurement" in parent_html.lower():
return "measurement"
return "unknown"
def _extract_measurements(self, soup: BeautifulSoup, result: ExtractionResult) -> None:
"""Extract product measurements"""
dimensions_ul = soup.select_one('ul.pip-product-dimensions__dimensions-container')
if dimensions_ul:
for li in dimensions_ul.select('li.pip-product-dimensions__measurement-wrapper'):
label_span = li.select_one('span.pip-product-dimensions__measurement-name')
if label_span:
label = label_span.get_text(strip=True).replace(":", "")
full_text = li.get_text(strip=True)
value = full_text.replace(label_span.get_text(), '').strip()
result.measurements[label.lower()] = value
def process_product_page(self, url: str, output_dir: Optional[str] = None) -> Dict[str, Any]:
"""
Process a product page to extract and save high-resolution images.
Args:
url: The product page URL
output_dir: Optional custom output directory
Returns:
Dictionary with paths to downloaded images and other product information
"""
# Extract images and measurements
extraction_result = self.extract_images_from_url(url)
# Create a directory for the images using the request ID
if not output_dir:
output_dir = f"output/{extraction_result.request_id}"
extraction_result.output_dir = output_dir
# Process all extracted images
downloaded_images = {}
for image_id, image_info in extraction_result.images.items():
# Determine filename based on image type
image_type = image_info.type
file_ext = os.path.splitext(image_info.url.split('?')[0])[1] or '.jpg'
filename = f"{image_type}{file_ext}"
# Download the image
save_path = os.path.join(output_dir, filename)
image_path = self.image_downloader.download_image(image_info.url, save_path)
if image_path:
image_info.path = image_path
downloaded_images[image_type] = {
'id': image_id,
'path': image_path,
'url': image_info.url,
'alt': image_info.alt,
'type': image_type
}
logger.info(f"Images downloaded to directory: {output_dir}")
return extraction_result.to_dict()
# Create a singleton instance for easy import
extractor = ProductExtractor()
# Export the main functions for API use
extract_images_from_url = extractor.extract_images_from_url
process_product_page = extractor.process_product_page
download_image = ImageDownloader.download_image