Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,66 +1,34 @@
|
|
1 |
-
import os
|
2 |
-
import tempfile
|
3 |
import gradio as gr
|
4 |
-
from pytube import YouTube
|
5 |
-
from moviepy import VideoFileClip
|
6 |
-
import whisper
|
7 |
from textblob import TextBlob
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
video_path = os.path.join(tmpdir, "video.mp4")
|
13 |
-
audio_path = os.path.join(tmpdir, "audio.wav")
|
14 |
-
|
15 |
-
# Download the video
|
16 |
-
yt = YouTube(url)
|
17 |
-
stream = yt.streams.filter(file_extension='mp4', only_video=False).first()
|
18 |
-
stream.download(output_path=tmpdir, filename="video.mp4")
|
19 |
-
|
20 |
-
# Extract audio
|
21 |
-
video_clip = VideoFileClip(video_path)
|
22 |
-
video_clip.audio.write_audiofile(audio_path, logger=None)
|
23 |
-
video_clip.close()
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
result = model.transcribe(audio_path)
|
28 |
-
return result["text"]
|
29 |
|
30 |
-
|
31 |
-
|
|
|
32 |
blob = TextBlob(text)
|
33 |
sentiment = blob.sentiment
|
|
|
34 |
return {
|
35 |
-
"polarity": round(sentiment.polarity, 2),
|
36 |
-
"subjectivity": round(sentiment.subjectivity, 2),
|
37 |
"assessment": "positive" if sentiment.polarity > 0 else "negative" if sentiment.polarity < 0 else "neutral"
|
38 |
}
|
39 |
|
40 |
-
#
|
41 |
-
def analyze_sentiment_from_video(url: str) -> dict:
|
42 |
-
"""
|
43 |
-
Transcribe audio from a video URL and analyze sentiment.
|
44 |
-
"""
|
45 |
-
transcription = transcribe_video_from_url(url)
|
46 |
-
sentiment = sentiment_analysis(transcription)
|
47 |
-
sentiment["transcription"] = transcription
|
48 |
-
return sentiment
|
49 |
-
|
50 |
-
# Gradio interface
|
51 |
demo = gr.Interface(
|
52 |
-
fn=
|
53 |
-
inputs=gr.Textbox(
|
54 |
-
outputs=
|
55 |
-
|
56 |
-
|
57 |
-
"subjectivity": gr.Number(label="Subjectivity"),
|
58 |
-
"transcription": gr.Textbox(label="Transcribed Text", lines=10),
|
59 |
-
},
|
60 |
-
title="🎥 Sentiment Analysis from YouTube Video",
|
61 |
-
description="Enter a YouTube video URL. The app will transcribe its audio and analyze the sentiment of the spoken content."
|
62 |
)
|
63 |
|
64 |
-
# Launch
|
65 |
if __name__ == "__main__":
|
66 |
-
demo.launch(mcp_server=True)
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
from textblob import TextBlob
|
3 |
|
4 |
+
def sentiment_analysis(text: str) -> dict:
|
5 |
+
"""
|
6 |
+
Analyze the sentiment of the given text.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
Args:
|
9 |
+
text (str): The text to analyze
|
|
|
|
|
10 |
|
11 |
+
Returns:
|
12 |
+
dict: A dictionary containing polarity, subjectivity, and assessment
|
13 |
+
"""
|
14 |
blob = TextBlob(text)
|
15 |
sentiment = blob.sentiment
|
16 |
+
|
17 |
return {
|
18 |
+
"polarity": round(sentiment.polarity, 2), # -1 (negative) to 1 (positive)
|
19 |
+
"subjectivity": round(sentiment.subjectivity, 2), # 0 (objective) to 1 (subjective)
|
20 |
"assessment": "positive" if sentiment.polarity > 0 else "negative" if sentiment.polarity < 0 else "neutral"
|
21 |
}
|
22 |
|
23 |
+
# Create the Gradio interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
demo = gr.Interface(
|
25 |
+
fn=sentiment_analysis,
|
26 |
+
inputs=gr.Textbox(placeholder="Enter text to analyze..."),
|
27 |
+
outputs=gr.JSON(),
|
28 |
+
title="Text Sentiment Analysis",
|
29 |
+
description="Analyze the sentiment of text using TextBlob"
|
|
|
|
|
|
|
|
|
|
|
30 |
)
|
31 |
|
32 |
+
# Launch the interface and MCP server
|
33 |
if __name__ == "__main__":
|
34 |
+
demo.launch(mcp_server=True)
|