Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | @@ -1,7 +1,66 @@ | |
|  | |
|  | |
| 1 | 
             
            import gradio as gr
         | 
|  | |
|  | |
|  | |
|  | |
| 2 |  | 
| 3 | 
            -
             | 
| 4 | 
            -
             | 
|  | |
|  | |
|  | |
| 5 |  | 
| 6 | 
            -
             | 
| 7 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import os
         | 
| 2 | 
            +
            import tempfile
         | 
| 3 | 
             
            import gradio as gr
         | 
| 4 | 
            +
            from pytube import YouTube
         | 
| 5 | 
            +
            from moviepy.editor import VideoFileClip
         | 
| 6 | 
            +
            import whisper
         | 
| 7 | 
            +
            from textblob import TextBlob
         | 
| 8 |  | 
| 9 | 
            +
            # Step 1: Transcribe video
         | 
| 10 | 
            +
            def transcribe_video_from_url(url: str) -> str:
         | 
| 11 | 
            +
                with tempfile.TemporaryDirectory() as tmpdir:
         | 
| 12 | 
            +
                    video_path = os.path.join(tmpdir, "video.mp4")
         | 
| 13 | 
            +
                    audio_path = os.path.join(tmpdir, "audio.wav")
         | 
| 14 |  | 
| 15 | 
            +
                    # Download the video
         | 
| 16 | 
            +
                    yt = YouTube(url)
         | 
| 17 | 
            +
                    stream = yt.streams.filter(file_extension='mp4', only_video=False).first()
         | 
| 18 | 
            +
                    stream.download(output_path=tmpdir, filename="video.mp4")
         | 
| 19 | 
            +
             | 
| 20 | 
            +
                    # Extract audio
         | 
| 21 | 
            +
                    video_clip = VideoFileClip(video_path)
         | 
| 22 | 
            +
                    video_clip.audio.write_audiofile(audio_path, logger=None)
         | 
| 23 | 
            +
                    video_clip.close()
         | 
| 24 | 
            +
             | 
| 25 | 
            +
                    # Transcribe with Whisper
         | 
| 26 | 
            +
                    model = whisper.load_model("base")
         | 
| 27 | 
            +
                    result = model.transcribe(audio_path)
         | 
| 28 | 
            +
                    return result["text"]
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            # Step 2: Analyze sentiment
         | 
| 31 | 
            +
            def sentiment_analysis(text: str) -> dict:
         | 
| 32 | 
            +
                blob = TextBlob(text)
         | 
| 33 | 
            +
                sentiment = blob.sentiment
         | 
| 34 | 
            +
                return {
         | 
| 35 | 
            +
                    "polarity": round(sentiment.polarity, 2),
         | 
| 36 | 
            +
                    "subjectivity": round(sentiment.subjectivity, 2),
         | 
| 37 | 
            +
                    "assessment": "positive" if sentiment.polarity > 0 else "negative" if sentiment.polarity < 0 else "neutral"
         | 
| 38 | 
            +
                }
         | 
| 39 | 
            +
             | 
| 40 | 
            +
            # Step 3: Main function for Gradio
         | 
| 41 | 
            +
            def analyze_sentiment_from_video(url: str) -> dict:
         | 
| 42 | 
            +
                """
         | 
| 43 | 
            +
                Transcribe audio from a video URL and analyze sentiment.
         | 
| 44 | 
            +
                """
         | 
| 45 | 
            +
                transcription = transcribe_video_from_url(url)
         | 
| 46 | 
            +
                sentiment = sentiment_analysis(transcription)
         | 
| 47 | 
            +
                sentiment["transcription"] = transcription
         | 
| 48 | 
            +
                return sentiment
         | 
| 49 | 
            +
             | 
| 50 | 
            +
            # Gradio interface
         | 
| 51 | 
            +
            demo = gr.Interface(
         | 
| 52 | 
            +
                fn=analyze_sentiment_from_video,
         | 
| 53 | 
            +
                inputs=gr.Textbox(label="YouTube Video URL"),
         | 
| 54 | 
            +
                outputs={
         | 
| 55 | 
            +
                    "assessment": gr.Textbox(label="Sentiment"),
         | 
| 56 | 
            +
                    "polarity": gr.Number(label="Polarity"),
         | 
| 57 | 
            +
                    "subjectivity": gr.Number(label="Subjectivity"),
         | 
| 58 | 
            +
                    "transcription": gr.Textbox(label="Transcribed Text", lines=10),
         | 
| 59 | 
            +
                },
         | 
| 60 | 
            +
                title="🎥 Sentiment Analysis from YouTube Video",
         | 
| 61 | 
            +
                description="Enter a YouTube video URL. The app will transcribe its audio and analyze the sentiment of the spoken content."
         | 
| 62 | 
            +
            )
         | 
| 63 | 
            +
             | 
| 64 | 
            +
            # Launch for Hugging Face Space
         | 
| 65 | 
            +
            if __name__ == "__main__":
         | 
| 66 | 
            +
                demo.launch(mcp_server=True)
         |