Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,66 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import tempfile
|
3 |
import gradio as gr
|
4 |
+
from pytube import YouTube
|
5 |
+
from moviepy.editor import VideoFileClip
|
6 |
+
import whisper
|
7 |
+
from textblob import TextBlob
|
8 |
|
9 |
+
# Step 1: Transcribe video
|
10 |
+
def transcribe_video_from_url(url: str) -> str:
|
11 |
+
with tempfile.TemporaryDirectory() as tmpdir:
|
12 |
+
video_path = os.path.join(tmpdir, "video.mp4")
|
13 |
+
audio_path = os.path.join(tmpdir, "audio.wav")
|
14 |
|
15 |
+
# Download the video
|
16 |
+
yt = YouTube(url)
|
17 |
+
stream = yt.streams.filter(file_extension='mp4', only_video=False).first()
|
18 |
+
stream.download(output_path=tmpdir, filename="video.mp4")
|
19 |
+
|
20 |
+
# Extract audio
|
21 |
+
video_clip = VideoFileClip(video_path)
|
22 |
+
video_clip.audio.write_audiofile(audio_path, logger=None)
|
23 |
+
video_clip.close()
|
24 |
+
|
25 |
+
# Transcribe with Whisper
|
26 |
+
model = whisper.load_model("base")
|
27 |
+
result = model.transcribe(audio_path)
|
28 |
+
return result["text"]
|
29 |
+
|
30 |
+
# Step 2: Analyze sentiment
|
31 |
+
def sentiment_analysis(text: str) -> dict:
|
32 |
+
blob = TextBlob(text)
|
33 |
+
sentiment = blob.sentiment
|
34 |
+
return {
|
35 |
+
"polarity": round(sentiment.polarity, 2),
|
36 |
+
"subjectivity": round(sentiment.subjectivity, 2),
|
37 |
+
"assessment": "positive" if sentiment.polarity > 0 else "negative" if sentiment.polarity < 0 else "neutral"
|
38 |
+
}
|
39 |
+
|
40 |
+
# Step 3: Main function for Gradio
|
41 |
+
def analyze_sentiment_from_video(url: str) -> dict:
|
42 |
+
"""
|
43 |
+
Transcribe audio from a video URL and analyze sentiment.
|
44 |
+
"""
|
45 |
+
transcription = transcribe_video_from_url(url)
|
46 |
+
sentiment = sentiment_analysis(transcription)
|
47 |
+
sentiment["transcription"] = transcription
|
48 |
+
return sentiment
|
49 |
+
|
50 |
+
# Gradio interface
|
51 |
+
demo = gr.Interface(
|
52 |
+
fn=analyze_sentiment_from_video,
|
53 |
+
inputs=gr.Textbox(label="YouTube Video URL"),
|
54 |
+
outputs={
|
55 |
+
"assessment": gr.Textbox(label="Sentiment"),
|
56 |
+
"polarity": gr.Number(label="Polarity"),
|
57 |
+
"subjectivity": gr.Number(label="Subjectivity"),
|
58 |
+
"transcription": gr.Textbox(label="Transcribed Text", lines=10),
|
59 |
+
},
|
60 |
+
title="🎥 Sentiment Analysis from YouTube Video",
|
61 |
+
description="Enter a YouTube video URL. The app will transcribe its audio and analyze the sentiment of the spoken content."
|
62 |
+
)
|
63 |
+
|
64 |
+
# Launch for Hugging Face Space
|
65 |
+
if __name__ == "__main__":
|
66 |
+
demo.launch(mcp_server=True)
|