RCaz commited on
Commit
e9af851
·
verified ·
1 Parent(s): c82bbe2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +63 -4
app.py CHANGED
@@ -1,7 +1,66 @@
 
 
1
  import gradio as gr
 
 
 
 
2
 
3
- def greet(name):
4
- return "Hello " + name + "!!"
 
 
 
5
 
6
- demo = gr.Interface(fn=greet, inputs="text", outputs="text")
7
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import tempfile
3
  import gradio as gr
4
+ from pytube import YouTube
5
+ from moviepy.editor import VideoFileClip
6
+ import whisper
7
+ from textblob import TextBlob
8
 
9
+ # Step 1: Transcribe video
10
+ def transcribe_video_from_url(url: str) -> str:
11
+ with tempfile.TemporaryDirectory() as tmpdir:
12
+ video_path = os.path.join(tmpdir, "video.mp4")
13
+ audio_path = os.path.join(tmpdir, "audio.wav")
14
 
15
+ # Download the video
16
+ yt = YouTube(url)
17
+ stream = yt.streams.filter(file_extension='mp4', only_video=False).first()
18
+ stream.download(output_path=tmpdir, filename="video.mp4")
19
+
20
+ # Extract audio
21
+ video_clip = VideoFileClip(video_path)
22
+ video_clip.audio.write_audiofile(audio_path, logger=None)
23
+ video_clip.close()
24
+
25
+ # Transcribe with Whisper
26
+ model = whisper.load_model("base")
27
+ result = model.transcribe(audio_path)
28
+ return result["text"]
29
+
30
+ # Step 2: Analyze sentiment
31
+ def sentiment_analysis(text: str) -> dict:
32
+ blob = TextBlob(text)
33
+ sentiment = blob.sentiment
34
+ return {
35
+ "polarity": round(sentiment.polarity, 2),
36
+ "subjectivity": round(sentiment.subjectivity, 2),
37
+ "assessment": "positive" if sentiment.polarity > 0 else "negative" if sentiment.polarity < 0 else "neutral"
38
+ }
39
+
40
+ # Step 3: Main function for Gradio
41
+ def analyze_sentiment_from_video(url: str) -> dict:
42
+ """
43
+ Transcribe audio from a video URL and analyze sentiment.
44
+ """
45
+ transcription = transcribe_video_from_url(url)
46
+ sentiment = sentiment_analysis(transcription)
47
+ sentiment["transcription"] = transcription
48
+ return sentiment
49
+
50
+ # Gradio interface
51
+ demo = gr.Interface(
52
+ fn=analyze_sentiment_from_video,
53
+ inputs=gr.Textbox(label="YouTube Video URL"),
54
+ outputs={
55
+ "assessment": gr.Textbox(label="Sentiment"),
56
+ "polarity": gr.Number(label="Polarity"),
57
+ "subjectivity": gr.Number(label="Subjectivity"),
58
+ "transcription": gr.Textbox(label="Transcribed Text", lines=10),
59
+ },
60
+ title="🎥 Sentiment Analysis from YouTube Video",
61
+ description="Enter a YouTube video URL. The app will transcribe its audio and analyze the sentiment of the spoken content."
62
+ )
63
+
64
+ # Launch for Hugging Face Space
65
+ if __name__ == "__main__":
66
+ demo.launch(mcp_server=True)