Spaces:
Running
Running
| """ | |
| ein notation: | |
| b - batch | |
| n - sequence | |
| nt - text sequence | |
| nw - raw wave length | |
| d - dimension | |
| """ | |
| from __future__ import annotations | |
| from typing import Callable | |
| from random import random | |
| import torch | |
| from torch import nn | |
| import torch.nn.functional as F | |
| from torch.nn.utils.rnn import pad_sequence | |
| from torchdiffeq import odeint | |
| from einops import rearrange | |
| from model.modules import MelSpec | |
| from model.utils import ( | |
| default, exists, | |
| list_str_to_idx, list_str_to_tensor, | |
| lens_to_mask, mask_from_frac_lengths, | |
| ) | |
| class CFM(nn.Module): | |
| def __init__( | |
| self, | |
| transformer: nn.Module, | |
| sigma = 0., | |
| odeint_kwargs: dict = dict( | |
| # atol = 1e-5, | |
| # rtol = 1e-5, | |
| method = 'euler' # 'midpoint' | |
| ), | |
| audio_drop_prob = 0.3, | |
| cond_drop_prob = 0.2, | |
| num_channels = None, | |
| mel_spec_module: nn.Module | None = None, | |
| mel_spec_kwargs: dict = dict(), | |
| frac_lengths_mask: tuple[float, float] = (0.7, 1.), | |
| vocab_char_map: dict[str: int] | None = None | |
| ): | |
| super().__init__() | |
| self.frac_lengths_mask = frac_lengths_mask | |
| # mel spec | |
| self.mel_spec = default(mel_spec_module, MelSpec(**mel_spec_kwargs)) | |
| num_channels = default(num_channels, self.mel_spec.n_mel_channels) | |
| self.num_channels = num_channels | |
| # classifier-free guidance | |
| self.audio_drop_prob = audio_drop_prob | |
| self.cond_drop_prob = cond_drop_prob | |
| # transformer | |
| self.transformer = transformer | |
| dim = transformer.dim | |
| self.dim = dim | |
| # conditional flow related | |
| self.sigma = sigma | |
| # sampling related | |
| self.odeint_kwargs = odeint_kwargs | |
| # vocab map for tokenization | |
| self.vocab_char_map = vocab_char_map | |
| def device(self): | |
| return next(self.parameters()).device | |
| def sample( | |
| self, | |
| cond: float['b n d'] | float['b nw'], | |
| text: int['b nt'] | list[str], | |
| duration: int | int['b'], | |
| *, | |
| lens: int['b'] | None = None, | |
| steps = 32, | |
| cfg_strength = 1., | |
| sway_sampling_coef = None, | |
| seed: int | None = None, | |
| max_duration = 4096, | |
| vocoder: Callable[[float['b d n']], float['b nw']] | None = None, | |
| no_ref_audio = False, | |
| duplicate_test = False, | |
| t_inter = 0.1, | |
| edit_mask = None, | |
| ): | |
| self.eval() | |
| # raw wave | |
| if cond.ndim == 2: | |
| cond = self.mel_spec(cond) | |
| cond = rearrange(cond, 'b d n -> b n d') | |
| assert cond.shape[-1] == self.num_channels | |
| batch, cond_seq_len, device = *cond.shape[:2], cond.device | |
| if not exists(lens): | |
| lens = torch.full((batch,), cond_seq_len, device = device, dtype = torch.long) | |
| # text | |
| if isinstance(text, list): | |
| if exists(self.vocab_char_map): | |
| text = list_str_to_idx(text, self.vocab_char_map).to(device) | |
| else: | |
| text = list_str_to_tensor(text).to(device) | |
| assert text.shape[0] == batch | |
| if exists(text): | |
| text_lens = (text != -1).sum(dim = -1) | |
| lens = torch.maximum(text_lens, lens) # make sure lengths are at least those of the text characters | |
| # duration | |
| cond_mask = lens_to_mask(lens) | |
| if edit_mask is not None: | |
| cond_mask = cond_mask & edit_mask | |
| if isinstance(duration, int): | |
| duration = torch.full((batch,), duration, device = device, dtype = torch.long) | |
| duration = torch.maximum(lens + 1, duration) # just add one token so something is generated | |
| duration = duration.clamp(max = max_duration) | |
| max_duration = duration.amax() | |
| # duplicate test corner for inner time step oberservation | |
| if duplicate_test: | |
| test_cond = F.pad(cond, (0, 0, cond_seq_len, max_duration - 2*cond_seq_len), value = 0.) | |
| cond = F.pad(cond, (0, 0, 0, max_duration - cond_seq_len), value = 0.) | |
| cond_mask = F.pad(cond_mask, (0, max_duration - cond_mask.shape[-1]), value = False) | |
| cond_mask = rearrange(cond_mask, '... -> ... 1') | |
| step_cond = torch.where(cond_mask, cond, torch.zeros_like(cond)) # allow direct control (cut cond audio) with lens passed in | |
| if batch > 1: | |
| mask = lens_to_mask(duration) | |
| else: # save memory and speed up, as single inference need no mask currently | |
| mask = None | |
| # test for no ref audio | |
| if no_ref_audio: | |
| cond = torch.zeros_like(cond) | |
| # neural ode | |
| def fn(t, x): | |
| # at each step, conditioning is fixed | |
| # step_cond = torch.where(cond_mask, cond, torch.zeros_like(cond)) | |
| # predict flow | |
| pred = self.transformer(x = x, cond = step_cond, text = text, time = t, mask = mask, drop_audio_cond = False, drop_text = False) | |
| if cfg_strength < 1e-5: | |
| return pred | |
| null_pred = self.transformer(x = x, cond = step_cond, text = text, time = t, mask = mask, drop_audio_cond = True, drop_text = True) | |
| return pred + (pred - null_pred) * cfg_strength | |
| # noise input | |
| # to make sure batch inference result is same with different batch size, and for sure single inference | |
| # still some difference maybe due to convolutional layers | |
| y0 = [] | |
| for dur in duration: | |
| if exists(seed): | |
| torch.manual_seed(seed) | |
| y0.append(torch.randn(dur, self.num_channels, device = self.device)) | |
| y0 = pad_sequence(y0, padding_value = 0, batch_first = True) | |
| t_start = 0 | |
| # duplicate test corner for inner time step oberservation | |
| if duplicate_test: | |
| t_start = t_inter | |
| y0 = (1 - t_start) * y0 + t_start * test_cond | |
| steps = int(steps * (1 - t_start)) | |
| t = torch.linspace(t_start, 1, steps, device = self.device) | |
| if sway_sampling_coef is not None: | |
| t = t + sway_sampling_coef * (torch.cos(torch.pi / 2 * t) - 1 + t) | |
| trajectory = odeint(fn, y0, t, **self.odeint_kwargs) | |
| sampled = trajectory[-1] | |
| out = sampled | |
| out = torch.where(cond_mask, cond, out) | |
| if exists(vocoder): | |
| out = rearrange(out, 'b n d -> b d n') | |
| out = vocoder(out) | |
| return out, trajectory | |
| def forward( | |
| self, | |
| inp: float['b n d'] | float['b nw'], # mel or raw wave | |
| text: int['b nt'] | list[str], | |
| *, | |
| lens: int['b'] | None = None, | |
| noise_scheduler: str | None = None, | |
| ): | |
| # handle raw wave | |
| if inp.ndim == 2: | |
| inp = self.mel_spec(inp) | |
| inp = rearrange(inp, 'b d n -> b n d') | |
| assert inp.shape[-1] == self.num_channels | |
| batch, seq_len, dtype, device, σ1 = *inp.shape[:2], inp.dtype, self.device, self.sigma | |
| # handle text as string | |
| if isinstance(text, list): | |
| if exists(self.vocab_char_map): | |
| text = list_str_to_idx(text, self.vocab_char_map).to(device) | |
| else: | |
| text = list_str_to_tensor(text).to(device) | |
| assert text.shape[0] == batch | |
| # lens and mask | |
| if not exists(lens): | |
| lens = torch.full((batch,), seq_len, device = device) | |
| mask = lens_to_mask(lens, length = seq_len) # useless here, as collate_fn will pad to max length in batch | |
| # get a random span to mask out for training conditionally | |
| frac_lengths = torch.zeros((batch,), device = self.device).float().uniform_(*self.frac_lengths_mask) | |
| rand_span_mask = mask_from_frac_lengths(lens, frac_lengths) | |
| if exists(mask): | |
| rand_span_mask &= mask | |
| # mel is x1 | |
| x1 = inp | |
| # x0 is gaussian noise | |
| x0 = torch.randn_like(x1) | |
| # time step | |
| time = torch.rand((batch,), dtype = dtype, device = self.device) | |
| # TODO. noise_scheduler | |
| # sample xt (φ_t(x) in the paper) | |
| t = rearrange(time, 'b -> b 1 1') | |
| φ = (1 - t) * x0 + t * x1 | |
| flow = x1 - x0 | |
| # only predict what is within the random mask span for infilling | |
| cond = torch.where( | |
| rand_span_mask[..., None], | |
| torch.zeros_like(x1), x1 | |
| ) | |
| # transformer and cfg training with a drop rate | |
| drop_audio_cond = random() < self.audio_drop_prob # p_drop in voicebox paper | |
| if random() < self.cond_drop_prob: # p_uncond in voicebox paper | |
| drop_audio_cond = True | |
| drop_text = True | |
| else: | |
| drop_text = False | |
| # if want rigourously mask out padding, record in collate_fn in dataset.py, and pass in here | |
| # adding mask will use more memory, thus also need to adjust batchsampler with scaled down threshold for long sequences | |
| pred = self.transformer(x = φ, cond = cond, text = text, time = time, drop_audio_cond = drop_audio_cond, drop_text = drop_text) | |
| # flow matching loss | |
| loss = F.mse_loss(pred, flow, reduction = 'none') | |
| loss = loss[rand_span_mask] | |
| return loss.mean(), cond, pred | |