Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | @@ -33,9 +33,15 @@ model_configs = { | |
| 33 | 
             
                'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
         | 
| 34 | 
             
                'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
         | 
| 35 | 
             
            }
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 36 | 
             
            encoder = 'vitg'
         | 
| 37 | 
             
            model = DepthAnythingV2(**model_configs[encoder])
         | 
| 38 | 
            -
            filepath = hf_hub_download(repo_id=" | 
| 39 | 
             
            state_dict = torch.load(filepath, map_location="cpu")
         | 
| 40 | 
             
            model.load_state_dict(state_dict)
         | 
| 41 | 
             
            model = model.to(DEVICE).eval()
         | 
|  | |
| 33 | 
             
                'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
         | 
| 34 | 
             
                'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
         | 
| 35 | 
             
            }
         | 
| 36 | 
            +
            encoder2name = {
         | 
| 37 | 
            +
                'vits': 'Small',
         | 
| 38 | 
            +
                'vitb': 'Base',
         | 
| 39 | 
            +
                'vitl': 'Large',
         | 
| 40 | 
            +
                'vitg': 'Gaint',
         | 
| 41 | 
            +
            }
         | 
| 42 | 
             
            encoder = 'vitg'
         | 
| 43 | 
             
            model = DepthAnythingV2(**model_configs[encoder])
         | 
| 44 | 
            +
            filepath = hf_hub_download(repo_id=f"depth-anything/Depth-Anything-V2-{encoder2name[encoder]}", filename=f"model.pth", repo_type="model")
         | 
| 45 | 
             
            state_dict = torch.load(filepath, map_location="cpu")
         | 
| 46 | 
             
            model.load_state_dict(state_dict)
         | 
| 47 | 
             
            model = model.to(DEVICE).eval()
         | 

