File size: 6,577 Bytes
b22b80e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import QwenImagePipeline

dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

pipe = QwenImagePipeline.from_pretrained("Qwen/Qwen-Image", torch_dtype=dtype).to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1536

@spaces.GPU()
def infer(prompt, negative_prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, true_cfg_scale=4.0, distilled_cfg_scale=1.0, progress=gr.Progress(track_tqdm=True)):
    """
    Generates an image based on a user's prompt using the Qwen-Image pipeline.

    This function takes textual prompts and various generation parameters,
    handles seed randomization, and runs the diffusion model to produce an image.

    Args:
        prompt (str): The positive text prompt to guide image generation.
        negative_prompt (str): The negative text prompt to guide the model
            on what to avoid in the generated image.
        seed (int, optional): The seed for the random number generator to ensure
            reproducible results. Defaults to 42.
        randomize_seed (bool, optional): If True, a random seed is generated,
            overriding the `seed` parameter. Defaults to False.
        width (int, optional): The width of the generated image in pixels.
            Defaults to 1024.
        height (int, optional): The height of the generated image in pixels.
            Defaults to 1024.
        num_inference_steps (int, optional): The number of denoising steps.
            More steps can lead to higher quality but take longer. Defaults to 4.
        true_cfg_scale (float, optional): The Classifier-Free Guidance scale.
            Controls how strictly the model follows the prompt. Defaults to 4.0.
        progress (gr.Progress, optional): A Gradio Progress object to track
            the inference progress in the UI.

    Returns:
        tuple: A tuple containing:
            - PIL.Image.Image: The generated image.
            - int: The seed used for the generation, which is useful for
              reproducibility, especially when `randomize_seed` is True.
    """
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    
    generator = torch.Generator().manual_seed(seed)
    
    image = pipe(
            prompt=prompt,
            negative_prompt=negative_prompt,
            width=width,
            height=height,
            num_inference_steps=num_inference_steps, 
            generator=generator,
            true_cfg_scale=true_cfg_scale,
            guidance_scale=distilled_cfg_scale
    ).images[0] 
    
    return image, seed
 
examples = [
    "a tiny dragon hatching from a crystal egg on Mars",
    "a red panda holding a sign that says 'I love bamboo'",
    "a photo of a capybara riding a tricycle in Paris. It is wearing a beret and a striped shirt.",
    "an anime illustration of a delicious ramen bowl",
    "A logo for a bookstore called 'The Whispering Page'. The logo should feature an open book with a tree growing out of it.",
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 580px;
}
"""

# Build the Gradio UI.
with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        # Title and description for the demo.
        gr.Markdown(f"""# Qwen-Image Text-to-Image
Gradio demo for [Qwen-Image](https://huggingface.co/Qwen/Qwen-Image), a powerful text-to-image model from the Qwen (通义千问) team at Alibaba.
        """)
        
        with gr.Row():
            # Main prompt input.
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            # The "Run" button.
            run_button = gr.Button("Run", scale=0)
            
        # Negative prompt input.
        negative_prompt = gr.Text(
            label="Negative Prompt",
            max_lines=1,
            placeholder="Enter a negative prompt",
            value="text, watermark, copyright, blurry, low resolution",
        )
        
        # Display area for the generated image.
        result = gr.Image(label="Result", show_label=False)
        
        # Accordion for advanced settings.
        with gr.Accordion("Advanced Settings", open=False):
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=42,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
            
            with gr.Row():
                num_inference_steps = gr.Slider(
                    label="Inference Steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=4,
                )
                true_cfg_scale = gr.Slider(
                    label="CFG Scale",
                    info="Controls how much the model follows the prompt. Higher values mean stricter adherence.",
                    minimum=1.0,
                    maximum=10.0,
                    step=0.1,
                    value=4.0
                )
                distilled_cfg_scale = gr.Slider(
                    label="Distilled Guidance",
                    minimum=0.0,
                    maximum=20.0,
                    step=0.1,
                    value=1.0
                )
        
        gr.Examples(
            examples=examples,
            fn=infer,
            inputs=[prompt, negative_prompt],
            outputs=[result, seed],
            cache_examples="lazy"
        )

    gr.on(
        triggers=[run_button.click, prompt.submit, negative_prompt.submit],
        fn=infer,
        inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, num_inference_steps, true_cfg_scale, distilled_cfg_scale],
        outputs=[result, seed]
    )

demo.launch(mcp_server=True)