Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import numpy as np | |
| import random | |
| import torch | |
| import spaces | |
| from PIL import Image | |
| # from diffusers import QwenImageEditPipeline | |
| from optimization import optimize_pipeline_ | |
| from qwenimage.pipeline_qwen_image_edit import QwenImageEditPipeline | |
| from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel | |
| from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3 | |
| import os | |
| import base64 | |
| import json | |
| SYSTEM_PROMPT = ''' | |
| # Edit Instruction Rewriter | |
| You are a professional edit instruction rewriter. Your task is to generate a precise, concise, and visually achievable professional-level edit instruction based on the user-provided instruction and the image to be edited. | |
| Please strictly follow the rewriting rules below: | |
| ## 1. General Principles | |
| - Keep the rewritten prompt **concise**. Avoid overly long sentences and reduce unnecessary descriptive language. | |
| - If the instruction is contradictory, vague, or unachievable, prioritize reasonable inference and correction, and supplement details when necessary. | |
| - Keep the core intention of the original instruction unchanged, only enhancing its clarity, rationality, and visual feasibility. | |
| - All added objects or modifications must align with the logic and style of the edited input image’s overall scene. | |
| ## 2. Task Type Handling Rules | |
| ### 1. Add, Delete, Replace Tasks | |
| - If the instruction is clear (already includes task type, target entity, position, quantity, attributes), preserve the original intent and only refine the grammar. | |
| - If the description is vague, supplement with minimal but sufficient details (category, color, size, orientation, position, etc.). For example: | |
| > Original: "Add an animal" | |
| > Rewritten: "Add a light-gray cat in the bottom-right corner, sitting and facing the camera" | |
| - Remove meaningless instructions: e.g., "Add 0 objects" should be ignored or flagged as invalid. | |
| - For replacement tasks, specify "Replace Y with X" and briefly describe the key visual features of X. | |
| ### 2. Text Editing Tasks | |
| - All text content must be enclosed in English double quotes `" "`. Do not translate or alter the original language of the text, and do not change the capitalization. | |
| - **For text replacement tasks, always use the fixed template:** | |
| - `Replace "xx" to "yy"`. | |
| - `Replace the xx bounding box to "yy"`. | |
| - If the user does not specify text content, infer and add concise text based on the instruction and the input image’s context. For example: | |
| > Original: "Add a line of text" (poster) | |
| > Rewritten: "Add text \"LIMITED EDITION\" at the top center with slight shadow" | |
| - Specify text position, color, and layout in a concise way. | |
| ### 3. Human Editing Tasks | |
| - Maintain the person’s core visual consistency (ethnicity, gender, age, hairstyle, expression, outfit, etc.). | |
| - If modifying appearance (e.g., clothes, hairstyle), ensure the new element is consistent with the original style. | |
| - **For expression changes, they must be natural and subtle, never exaggerated.** | |
| - If deletion is not specifically emphasized, the most important subject in the original image (e.g., a person, an animal) should be preserved. | |
| - For background change tasks, emphasize maintaining subject consistency at first. | |
| - Example: | |
| > Original: "Change the person’s hat" | |
| > Rewritten: "Replace the man’s hat with a dark brown beret; keep smile, short hair, and gray jacket unchanged" | |
| ### 4. Style Transformation or Enhancement Tasks | |
| - If a style is specified, describe it concisely with key visual traits. For example: | |
| > Original: "Disco style" | |
| > Rewritten: "1970s disco: flashing lights, disco ball, mirrored walls, colorful tones" | |
| - If the instruction says "use reference style" or "keep current style," analyze the input image, extract main features (color, composition, texture, lighting, art style), and integrate them concisely. | |
| - **For coloring tasks, including restoring old photos, always use the fixed template:** "Restore old photograph, remove scratches, reduce noise, enhance details, high resolution, realistic, natural skin tones, clear facial features, no distortion, vintage photo restoration" | |
| - If there are other changes, place the style description at the end. | |
| ## 3. Rationality and Logic Checks | |
| - Resolve contradictory instructions: e.g., "Remove all trees but keep all trees" should be logically corrected. | |
| - Add missing key information: if position is unspecified, choose a reasonable area based on composition (near subject, empty space, center/edges). | |
| # Output Format Example | |
| ```json | |
| { | |
| "Rewritten": "..." | |
| } | |
| ''' | |
| def polish_prompt(prompt, img): | |
| prompt = f"{SYSTEM_PROMPT}\n\nUser Input: {prompt}\n\nRewritten Prompt:" | |
| success=False | |
| while not success: | |
| try: | |
| result = api(prompt, [img]) | |
| # print(f"Result: {result}") | |
| # print(f"Polished Prompt: {polished_prompt}") | |
| if isinstance(result, str): | |
| result = result.replace('```json','') | |
| result = result.replace('```','') | |
| result = json.loads(result) | |
| else: | |
| result = json.loads(result) | |
| polished_prompt = result['Rewritten'] | |
| polished_prompt = polished_prompt.strip() | |
| polished_prompt = polished_prompt.replace("\n", " ") | |
| success = True | |
| except Exception as e: | |
| print(f"[Warning] Error during API call: {e}") | |
| return polished_prompt | |
| def encode_image(pil_image): | |
| import io | |
| buffered = io.BytesIO() | |
| pil_image.save(buffered, format="PNG") | |
| return base64.b64encode(buffered.getvalue()).decode("utf-8") | |
| def api(prompt, img_list, model="qwen-vl-max-latest", kwargs={}): | |
| import dashscope | |
| api_key = os.environ.get('DASH_API_KEY') | |
| if not api_key: | |
| raise EnvironmentError("DASH_API_KEY is not set") | |
| assert model in ["qwen-vl-max-latest"], f"Not implemented model {model}" | |
| sys_promot = "you are a helpful assistant, you should provide useful answers to users." | |
| messages = [ | |
| {"role": "system", "content": sys_promot}, | |
| {"role": "user", "content": []}] | |
| for img in img_list: | |
| messages[1]["content"].append( | |
| {"image": f"data:image/png;base64,{encode_image(img)}"}) | |
| messages[1]["content"].append({"text": f"{prompt}"}) | |
| response_format = kwargs.get('response_format', None) | |
| response = dashscope.MultiModalConversation.call( | |
| api_key=api_key, | |
| model=model, # For example, use qwen-plus here. You can change the model name as needed. Model list: https://help.aliyun.com/zh/model-studio/getting-started/models | |
| messages=messages, | |
| result_format='message', | |
| response_format=response_format, | |
| ) | |
| if response.status_code == 200: | |
| return response.output.choices[0].message.content[0]['text'] | |
| else: | |
| raise Exception(f'Failed to post: {response}') | |
| # --- Model Loading --- | |
| dtype = torch.bfloat16 | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| pipe = QwenImageEditPipeline.from_pretrained("Qwen/Qwen-Image-Edit", torch_dtype=dtype).to(device) | |
| pipe.transformer.__class__ = QwenImageTransformer2DModel | |
| pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3()) | |
| # --- Ahead-of-time compilation --- | |
| optimize_pipeline_(pipe, image=Image.new("RGB", (1024, 1024)), prompt="prompt") | |
| # --- UI Constants and Helpers --- | |
| MAX_SEED = np.iinfo(np.int32).max | |
| # --- Main Inference Function (with hardcoded negative prompt) --- | |
| def infer( | |
| image, | |
| prompt, | |
| seed=120, | |
| randomize_seed=False, | |
| true_guidance_scale=1.0, | |
| num_inference_steps=50, | |
| rewrite_prompt=True, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| """ | |
| Generates an image using the local Qwen-Image diffusers pipeline. | |
| """ | |
| # Hardcode the negative prompt as requested | |
| negative_prompt = " " | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| # Set up the generator for reproducibility | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| print(f"Calling pipeline with prompt: '{prompt}'") | |
| print(f"Negative Prompt: '{negative_prompt}'") | |
| print(f"Seed: {seed}, Steps: {num_inference_steps}, Guidance: {true_guidance_scale}") | |
| if rewrite_prompt: | |
| prompt = polish_prompt(prompt, image) | |
| print(f"Rewritten Prompt: {prompt}") | |
| # Generate the image | |
| images = pipe( | |
| image, | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| num_inference_steps=num_inference_steps, | |
| generator=generator, | |
| true_cfg_scale=true_guidance_scale, | |
| num_images_per_prompt=1 | |
| ).images | |
| return images[0], seed | |
| # --- Examples and UI Layout --- | |
| examples = [] | |
| css = """ | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 1024px; | |
| } | |
| #edit_text{ | |
| margin-top: -62px !important | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.HTML('<img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/qwen_image_edit_logo.png" alt="Qwen-Image Logo" width="400" style="display: block; margin: 0 auto;">') | |
| gr.Markdown("[Learn more](https://github.com/QwenLM/Qwen-Image) about the Qwen-Image series. Try on [Qwen Chat](https://chat.qwen.ai/), or [download model](https://huggingface.co/Qwen/Qwen-Image-Edit) to run locally with ComfyUI or diffusers.") | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_image = gr.Image(label="Input Image", show_label=False, type="pil") | |
| result = gr.Image(label="Result", show_label=False, type="pil") | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| placeholder="describe the edit instruction", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Edit!", variant="primary") | |
| with gr.Accordion("Advanced Settings", open=False): | |
| # Negative prompt UI element is removed here | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| true_guidance_scale = gr.Slider( | |
| label="True guidance scale", | |
| minimum=1.0, | |
| maximum=10.0, | |
| step=0.1, | |
| value=4.0 | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=1, | |
| maximum=50, | |
| step=1, | |
| value=50, | |
| ) | |
| rewrite_prompt = gr.Checkbox(label="Rewrite prompt", value=True) | |
| gr.Examples(examples=[ | |
| ["neon_sign.png", "change the text to read 'Qwen Image Edit is here'"], | |
| ["cat_sitting.jpg", "make the cat floating in the air and holding a sign that reads 'this is fun' written with a blue crayon"], | |
| ["pie.png", "turn the style of the photo to vintage comic book"]], | |
| inputs=[input_image, prompt], | |
| outputs=[result, seed], | |
| fn=infer, | |
| cache_examples="lazy") | |
| gr.on( | |
| triggers=[run_button.click, prompt.submit], | |
| fn=infer, | |
| inputs=[ | |
| input_image, | |
| prompt, | |
| seed, | |
| randomize_seed, | |
| true_guidance_scale, | |
| num_inference_steps, | |
| rewrite_prompt, | |
| ], | |
| outputs=[result, seed], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |