Spaces:
Running
on
Zero
Running
on
Zero
Upload pipeline_qwenimage_edit_plus.py
Browse files
qwenimage/pipeline_qwenimage_edit_plus.py
ADDED
@@ -0,0 +1,891 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2025 Qwen-Image Team and The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import inspect
|
16 |
+
import math
|
17 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
import torch
|
21 |
+
from transformers import Qwen2_5_VLForConditionalGeneration, Qwen2Tokenizer, Qwen2VLProcessor
|
22 |
+
|
23 |
+
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
24 |
+
from diffusers.loaders import QwenImageLoraLoaderMixin
|
25 |
+
from diffusers.models import AutoencoderKLQwenImage, QwenImageTransformer2DModel
|
26 |
+
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
|
27 |
+
from diffusers.utils import is_torch_xla_available, logging, replace_example_docstring
|
28 |
+
from diffusers.utils.torch_utils import randn_tensor
|
29 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
30 |
+
from diffusers.pipelines.qwenimage.pipeline_output import QwenImagePipelineOutput
|
31 |
+
|
32 |
+
|
33 |
+
if is_torch_xla_available():
|
34 |
+
import torch_xla.core.xla_model as xm
|
35 |
+
|
36 |
+
XLA_AVAILABLE = True
|
37 |
+
else:
|
38 |
+
XLA_AVAILABLE = False
|
39 |
+
|
40 |
+
|
41 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
42 |
+
|
43 |
+
EXAMPLE_DOC_STRING = """
|
44 |
+
Examples:
|
45 |
+
```py
|
46 |
+
>>> import torch
|
47 |
+
>>> from PIL import Image
|
48 |
+
>>> from diffusers import QwenImageEditPlusPipeline
|
49 |
+
>>> from diffusers.utils import load_image
|
50 |
+
|
51 |
+
>>> pipe = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2509", torch_dtype=torch.bfloat16)
|
52 |
+
>>> pipe.to("cuda")
|
53 |
+
>>> image = load_image(
|
54 |
+
... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/yarn-art-pikachu.png"
|
55 |
+
... ).convert("RGB")
|
56 |
+
>>> prompt = (
|
57 |
+
... "Make Pikachu hold a sign that says 'Qwen Edit is awesome', yarn art style, detailed, vibrant colors"
|
58 |
+
... )
|
59 |
+
>>> # Depending on the variant being used, the pipeline call will slightly vary.
|
60 |
+
>>> # Refer to the pipeline documentation for more details.
|
61 |
+
>>> image = pipe(image, prompt, num_inference_steps=50).images[0]
|
62 |
+
>>> image.save("qwenimage_edit_plus.png")
|
63 |
+
```
|
64 |
+
"""
|
65 |
+
|
66 |
+
CONDITION_IMAGE_SIZE = 384 * 384
|
67 |
+
VAE_IMAGE_SIZE = 1024 * 1024
|
68 |
+
|
69 |
+
|
70 |
+
# Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage.calculate_shift
|
71 |
+
def calculate_shift(
|
72 |
+
image_seq_len,
|
73 |
+
base_seq_len: int = 256,
|
74 |
+
max_seq_len: int = 4096,
|
75 |
+
base_shift: float = 0.5,
|
76 |
+
max_shift: float = 1.15,
|
77 |
+
):
|
78 |
+
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
79 |
+
b = base_shift - m * base_seq_len
|
80 |
+
mu = image_seq_len * m + b
|
81 |
+
return mu
|
82 |
+
|
83 |
+
|
84 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
85 |
+
def retrieve_timesteps(
|
86 |
+
scheduler,
|
87 |
+
num_inference_steps: Optional[int] = None,
|
88 |
+
device: Optional[Union[str, torch.device]] = None,
|
89 |
+
timesteps: Optional[List[int]] = None,
|
90 |
+
sigmas: Optional[List[float]] = None,
|
91 |
+
**kwargs,
|
92 |
+
):
|
93 |
+
r"""
|
94 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
95 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
96 |
+
|
97 |
+
Args:
|
98 |
+
scheduler (`SchedulerMixin`):
|
99 |
+
The scheduler to get timesteps from.
|
100 |
+
num_inference_steps (`int`):
|
101 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
102 |
+
must be `None`.
|
103 |
+
device (`str` or `torch.device`, *optional*):
|
104 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
105 |
+
timesteps (`List[int]`, *optional*):
|
106 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
107 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
108 |
+
sigmas (`List[float]`, *optional*):
|
109 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
110 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
111 |
+
|
112 |
+
Returns:
|
113 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
114 |
+
second element is the number of inference steps.
|
115 |
+
"""
|
116 |
+
if timesteps is not None and sigmas is not None:
|
117 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
118 |
+
if timesteps is not None:
|
119 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
120 |
+
if not accepts_timesteps:
|
121 |
+
raise ValueError(
|
122 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
123 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
124 |
+
)
|
125 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
126 |
+
timesteps = scheduler.timesteps
|
127 |
+
num_inference_steps = len(timesteps)
|
128 |
+
elif sigmas is not None:
|
129 |
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
130 |
+
if not accept_sigmas:
|
131 |
+
raise ValueError(
|
132 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
133 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
134 |
+
)
|
135 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
136 |
+
timesteps = scheduler.timesteps
|
137 |
+
num_inference_steps = len(timesteps)
|
138 |
+
else:
|
139 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
140 |
+
timesteps = scheduler.timesteps
|
141 |
+
return timesteps, num_inference_steps
|
142 |
+
|
143 |
+
|
144 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
145 |
+
def retrieve_latents(
|
146 |
+
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
147 |
+
):
|
148 |
+
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
149 |
+
return encoder_output.latent_dist.sample(generator)
|
150 |
+
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
151 |
+
return encoder_output.latent_dist.mode()
|
152 |
+
elif hasattr(encoder_output, "latents"):
|
153 |
+
return encoder_output.latents
|
154 |
+
else:
|
155 |
+
raise AttributeError("Could not access latents of provided encoder_output")
|
156 |
+
|
157 |
+
|
158 |
+
def calculate_dimensions(target_area, ratio):
|
159 |
+
width = math.sqrt(target_area * ratio)
|
160 |
+
height = width / ratio
|
161 |
+
|
162 |
+
width = round(width / 32) * 32
|
163 |
+
height = round(height / 32) * 32
|
164 |
+
|
165 |
+
return width, height
|
166 |
+
|
167 |
+
|
168 |
+
class QwenImageEditPlusPipeline(DiffusionPipeline, QwenImageLoraLoaderMixin):
|
169 |
+
r"""
|
170 |
+
The Qwen-Image-Edit pipeline for image editing.
|
171 |
+
|
172 |
+
Args:
|
173 |
+
transformer ([`QwenImageTransformer2DModel`]):
|
174 |
+
Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
|
175 |
+
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
|
176 |
+
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
|
177 |
+
vae ([`AutoencoderKL`]):
|
178 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
179 |
+
text_encoder ([`Qwen2.5-VL-7B-Instruct`]):
|
180 |
+
[Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct), specifically the
|
181 |
+
[Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct) variant.
|
182 |
+
tokenizer (`QwenTokenizer`):
|
183 |
+
Tokenizer of class
|
184 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
|
185 |
+
"""
|
186 |
+
|
187 |
+
model_cpu_offload_seq = "text_encoder->transformer->vae"
|
188 |
+
_callback_tensor_inputs = ["latents", "prompt_embeds"]
|
189 |
+
|
190 |
+
def __init__(
|
191 |
+
self,
|
192 |
+
scheduler: FlowMatchEulerDiscreteScheduler,
|
193 |
+
vae: AutoencoderKLQwenImage,
|
194 |
+
text_encoder: Qwen2_5_VLForConditionalGeneration,
|
195 |
+
tokenizer: Qwen2Tokenizer,
|
196 |
+
processor: Qwen2VLProcessor,
|
197 |
+
transformer: QwenImageTransformer2DModel,
|
198 |
+
):
|
199 |
+
super().__init__()
|
200 |
+
|
201 |
+
self.register_modules(
|
202 |
+
vae=vae,
|
203 |
+
text_encoder=text_encoder,
|
204 |
+
tokenizer=tokenizer,
|
205 |
+
processor=processor,
|
206 |
+
transformer=transformer,
|
207 |
+
scheduler=scheduler,
|
208 |
+
)
|
209 |
+
self.vae_scale_factor = 2 ** len(self.vae.temperal_downsample) if getattr(self, "vae", None) else 8
|
210 |
+
self.latent_channels = self.vae.config.z_dim if getattr(self, "vae", None) else 16
|
211 |
+
# QwenImage latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
|
212 |
+
# by the patch size. So the vae scale factor is multiplied by the patch size to account for this
|
213 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
|
214 |
+
self.tokenizer_max_length = 1024
|
215 |
+
|
216 |
+
self.prompt_template_encode = "<|im_start|>system\nDescribe the key features of the input image (color, shape, size, texture, objects, background), then explain how the user's text instruction should alter or modify the image. Generate a new image that meets the user's requirements while maintaining consistency with the original input where appropriate.<|im_end|>\n<|im_start|>user\n{}<|im_end|>\n<|im_start|>assistant\n"
|
217 |
+
self.prompt_template_encode_start_idx = 64
|
218 |
+
self.default_sample_size = 128
|
219 |
+
|
220 |
+
# Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage.QwenImagePipeline._extract_masked_hidden
|
221 |
+
def _extract_masked_hidden(self, hidden_states: torch.Tensor, mask: torch.Tensor):
|
222 |
+
bool_mask = mask.bool()
|
223 |
+
valid_lengths = bool_mask.sum(dim=1)
|
224 |
+
selected = hidden_states[bool_mask]
|
225 |
+
split_result = torch.split(selected, valid_lengths.tolist(), dim=0)
|
226 |
+
|
227 |
+
return split_result
|
228 |
+
|
229 |
+
def _get_qwen_prompt_embeds(
|
230 |
+
self,
|
231 |
+
prompt: Union[str, List[str]] = None,
|
232 |
+
image: Optional[torch.Tensor] = None,
|
233 |
+
device: Optional[torch.device] = None,
|
234 |
+
dtype: Optional[torch.dtype] = None,
|
235 |
+
):
|
236 |
+
device = device or self._execution_device
|
237 |
+
dtype = dtype or self.text_encoder.dtype
|
238 |
+
|
239 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
240 |
+
img_prompt_template = "Picture {}: <|vision_start|><|image_pad|><|vision_end|>"
|
241 |
+
if isinstance(image, list):
|
242 |
+
base_img_prompt = ""
|
243 |
+
for i, img in enumerate(image):
|
244 |
+
base_img_prompt += img_prompt_template.format(i + 1)
|
245 |
+
elif image is not None:
|
246 |
+
base_img_prompt = img_prompt_template.format(1)
|
247 |
+
else:
|
248 |
+
base_img_prompt = ""
|
249 |
+
|
250 |
+
template = self.prompt_template_encode
|
251 |
+
|
252 |
+
drop_idx = self.prompt_template_encode_start_idx
|
253 |
+
txt = [template.format(base_img_prompt + e) for e in prompt]
|
254 |
+
|
255 |
+
model_inputs = self.processor(
|
256 |
+
text=txt,
|
257 |
+
images=image,
|
258 |
+
padding=True,
|
259 |
+
return_tensors="pt",
|
260 |
+
).to(device)
|
261 |
+
|
262 |
+
outputs = self.text_encoder(
|
263 |
+
input_ids=model_inputs.input_ids,
|
264 |
+
attention_mask=model_inputs.attention_mask,
|
265 |
+
pixel_values=model_inputs.pixel_values,
|
266 |
+
image_grid_thw=model_inputs.image_grid_thw,
|
267 |
+
output_hidden_states=True,
|
268 |
+
)
|
269 |
+
|
270 |
+
hidden_states = outputs.hidden_states[-1]
|
271 |
+
split_hidden_states = self._extract_masked_hidden(hidden_states, model_inputs.attention_mask)
|
272 |
+
split_hidden_states = [e[drop_idx:] for e in split_hidden_states]
|
273 |
+
attn_mask_list = [torch.ones(e.size(0), dtype=torch.long, device=e.device) for e in split_hidden_states]
|
274 |
+
max_seq_len = max([e.size(0) for e in split_hidden_states])
|
275 |
+
prompt_embeds = torch.stack(
|
276 |
+
[torch.cat([u, u.new_zeros(max_seq_len - u.size(0), u.size(1))]) for u in split_hidden_states]
|
277 |
+
)
|
278 |
+
encoder_attention_mask = torch.stack(
|
279 |
+
[torch.cat([u, u.new_zeros(max_seq_len - u.size(0))]) for u in attn_mask_list]
|
280 |
+
)
|
281 |
+
|
282 |
+
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
283 |
+
|
284 |
+
return prompt_embeds, encoder_attention_mask
|
285 |
+
|
286 |
+
# Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage_edit.QwenImageEditPipeline.encode_prompt
|
287 |
+
def encode_prompt(
|
288 |
+
self,
|
289 |
+
prompt: Union[str, List[str]],
|
290 |
+
image: Optional[torch.Tensor] = None,
|
291 |
+
device: Optional[torch.device] = None,
|
292 |
+
num_images_per_prompt: int = 1,
|
293 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
294 |
+
prompt_embeds_mask: Optional[torch.Tensor] = None,
|
295 |
+
max_sequence_length: int = 1024,
|
296 |
+
):
|
297 |
+
r"""
|
298 |
+
|
299 |
+
Args:
|
300 |
+
prompt (`str` or `List[str]`, *optional*):
|
301 |
+
prompt to be encoded
|
302 |
+
image (`torch.Tensor`, *optional*):
|
303 |
+
image to be encoded
|
304 |
+
device: (`torch.device`):
|
305 |
+
torch device
|
306 |
+
num_images_per_prompt (`int`):
|
307 |
+
number of images that should be generated per prompt
|
308 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
309 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
310 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
311 |
+
"""
|
312 |
+
device = device or self._execution_device
|
313 |
+
|
314 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
315 |
+
batch_size = len(prompt) if prompt_embeds is None else prompt_embeds.shape[0]
|
316 |
+
|
317 |
+
if prompt_embeds is None:
|
318 |
+
prompt_embeds, prompt_embeds_mask = self._get_qwen_prompt_embeds(prompt, image, device)
|
319 |
+
|
320 |
+
_, seq_len, _ = prompt_embeds.shape
|
321 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
322 |
+
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
323 |
+
prompt_embeds_mask = prompt_embeds_mask.repeat(1, num_images_per_prompt, 1)
|
324 |
+
prompt_embeds_mask = prompt_embeds_mask.view(batch_size * num_images_per_prompt, seq_len)
|
325 |
+
|
326 |
+
return prompt_embeds, prompt_embeds_mask
|
327 |
+
|
328 |
+
# Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage_edit.QwenImageEditPipeline.check_inputs
|
329 |
+
def check_inputs(
|
330 |
+
self,
|
331 |
+
prompt,
|
332 |
+
height,
|
333 |
+
width,
|
334 |
+
negative_prompt=None,
|
335 |
+
prompt_embeds=None,
|
336 |
+
negative_prompt_embeds=None,
|
337 |
+
prompt_embeds_mask=None,
|
338 |
+
negative_prompt_embeds_mask=None,
|
339 |
+
callback_on_step_end_tensor_inputs=None,
|
340 |
+
max_sequence_length=None,
|
341 |
+
):
|
342 |
+
if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0:
|
343 |
+
logger.warning(
|
344 |
+
f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly"
|
345 |
+
)
|
346 |
+
|
347 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
348 |
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
349 |
+
):
|
350 |
+
raise ValueError(
|
351 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
352 |
+
)
|
353 |
+
|
354 |
+
if prompt is not None and prompt_embeds is not None:
|
355 |
+
raise ValueError(
|
356 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
357 |
+
" only forward one of the two."
|
358 |
+
)
|
359 |
+
elif prompt is None and prompt_embeds is None:
|
360 |
+
raise ValueError(
|
361 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
362 |
+
)
|
363 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
364 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
365 |
+
|
366 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
367 |
+
raise ValueError(
|
368 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
369 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
370 |
+
)
|
371 |
+
|
372 |
+
if prompt_embeds is not None and prompt_embeds_mask is None:
|
373 |
+
raise ValueError(
|
374 |
+
"If `prompt_embeds` are provided, `prompt_embeds_mask` also have to be passed. Make sure to generate `prompt_embeds_mask` from the same text encoder that was used to generate `prompt_embeds`."
|
375 |
+
)
|
376 |
+
if negative_prompt_embeds is not None and negative_prompt_embeds_mask is None:
|
377 |
+
raise ValueError(
|
378 |
+
"If `negative_prompt_embeds` are provided, `negative_prompt_embeds_mask` also have to be passed. Make sure to generate `negative_prompt_embeds_mask` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
379 |
+
)
|
380 |
+
|
381 |
+
if max_sequence_length is not None and max_sequence_length > 1024:
|
382 |
+
raise ValueError(f"`max_sequence_length` cannot be greater than 1024 but is {max_sequence_length}")
|
383 |
+
|
384 |
+
@staticmethod
|
385 |
+
# Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage.QwenImagePipeline._pack_latents
|
386 |
+
def _pack_latents(latents, batch_size, num_channels_latents, height, width):
|
387 |
+
latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
|
388 |
+
latents = latents.permute(0, 2, 4, 1, 3, 5)
|
389 |
+
latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
|
390 |
+
|
391 |
+
return latents
|
392 |
+
|
393 |
+
@staticmethod
|
394 |
+
# Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage.QwenImagePipeline._unpack_latents
|
395 |
+
def _unpack_latents(latents, height, width, vae_scale_factor):
|
396 |
+
batch_size, num_patches, channels = latents.shape
|
397 |
+
|
398 |
+
# VAE applies 8x compression on images but we must also account for packing which requires
|
399 |
+
# latent height and width to be divisible by 2.
|
400 |
+
height = 2 * (int(height) // (vae_scale_factor * 2))
|
401 |
+
width = 2 * (int(width) // (vae_scale_factor * 2))
|
402 |
+
|
403 |
+
latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2)
|
404 |
+
latents = latents.permute(0, 3, 1, 4, 2, 5)
|
405 |
+
|
406 |
+
latents = latents.reshape(batch_size, channels // (2 * 2), 1, height, width)
|
407 |
+
|
408 |
+
return latents
|
409 |
+
|
410 |
+
# Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage_edit.QwenImageEditPipeline._encode_vae_image
|
411 |
+
def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
|
412 |
+
if isinstance(generator, list):
|
413 |
+
image_latents = [
|
414 |
+
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i], sample_mode="argmax")
|
415 |
+
for i in range(image.shape[0])
|
416 |
+
]
|
417 |
+
image_latents = torch.cat(image_latents, dim=0)
|
418 |
+
else:
|
419 |
+
image_latents = retrieve_latents(self.vae.encode(image), generator=generator, sample_mode="argmax")
|
420 |
+
latents_mean = (
|
421 |
+
torch.tensor(self.vae.config.latents_mean)
|
422 |
+
.view(1, self.latent_channels, 1, 1, 1)
|
423 |
+
.to(image_latents.device, image_latents.dtype)
|
424 |
+
)
|
425 |
+
latents_std = (
|
426 |
+
torch.tensor(self.vae.config.latents_std)
|
427 |
+
.view(1, self.latent_channels, 1, 1, 1)
|
428 |
+
.to(image_latents.device, image_latents.dtype)
|
429 |
+
)
|
430 |
+
image_latents = (image_latents - latents_mean) / latents_std
|
431 |
+
|
432 |
+
return image_latents
|
433 |
+
|
434 |
+
def prepare_latents(
|
435 |
+
self,
|
436 |
+
images,
|
437 |
+
batch_size,
|
438 |
+
num_channels_latents,
|
439 |
+
height,
|
440 |
+
width,
|
441 |
+
dtype,
|
442 |
+
device,
|
443 |
+
generator,
|
444 |
+
latents=None,
|
445 |
+
):
|
446 |
+
# VAE applies 8x compression on images but we must also account for packing which requires
|
447 |
+
# latent height and width to be divisible by 2.
|
448 |
+
height = 2 * (int(height) // (self.vae_scale_factor * 2))
|
449 |
+
width = 2 * (int(width) // (self.vae_scale_factor * 2))
|
450 |
+
|
451 |
+
shape = (batch_size, 1, num_channels_latents, height, width)
|
452 |
+
|
453 |
+
image_latents = None
|
454 |
+
if images is not None:
|
455 |
+
if not isinstance(images, list):
|
456 |
+
images = [images]
|
457 |
+
all_image_latents = []
|
458 |
+
for image in images:
|
459 |
+
image = image.to(device=device, dtype=dtype)
|
460 |
+
if image.shape[1] != self.latent_channels:
|
461 |
+
image_latents = self._encode_vae_image(image=image, generator=generator)
|
462 |
+
else:
|
463 |
+
image_latents = image
|
464 |
+
if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
|
465 |
+
# expand init_latents for batch_size
|
466 |
+
additional_image_per_prompt = batch_size // image_latents.shape[0]
|
467 |
+
image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
|
468 |
+
elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
|
469 |
+
raise ValueError(
|
470 |
+
f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
|
471 |
+
)
|
472 |
+
else:
|
473 |
+
image_latents = torch.cat([image_latents], dim=0)
|
474 |
+
|
475 |
+
image_latent_height, image_latent_width = image_latents.shape[3:]
|
476 |
+
image_latents = self._pack_latents(
|
477 |
+
image_latents, batch_size, num_channels_latents, image_latent_height, image_latent_width
|
478 |
+
)
|
479 |
+
all_image_latents.append(image_latents)
|
480 |
+
image_latents = torch.cat(all_image_latents, dim=1)
|
481 |
+
|
482 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
483 |
+
raise ValueError(
|
484 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
485 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
486 |
+
)
|
487 |
+
if latents is None:
|
488 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
489 |
+
latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
|
490 |
+
else:
|
491 |
+
latents = latents.to(device=device, dtype=dtype)
|
492 |
+
|
493 |
+
return latents, image_latents
|
494 |
+
|
495 |
+
@property
|
496 |
+
def guidance_scale(self):
|
497 |
+
return self._guidance_scale
|
498 |
+
|
499 |
+
@property
|
500 |
+
def attention_kwargs(self):
|
501 |
+
return self._attention_kwargs
|
502 |
+
|
503 |
+
@property
|
504 |
+
def num_timesteps(self):
|
505 |
+
return self._num_timesteps
|
506 |
+
|
507 |
+
@property
|
508 |
+
def current_timestep(self):
|
509 |
+
return self._current_timestep
|
510 |
+
|
511 |
+
@property
|
512 |
+
def interrupt(self):
|
513 |
+
return self._interrupt
|
514 |
+
|
515 |
+
@torch.no_grad()
|
516 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
517 |
+
def __call__(
|
518 |
+
self,
|
519 |
+
image: Optional[PipelineImageInput] = None,
|
520 |
+
prompt: Union[str, List[str]] = None,
|
521 |
+
negative_prompt: Union[str, List[str]] = None,
|
522 |
+
true_cfg_scale: float = 4.0,
|
523 |
+
height: Optional[int] = None,
|
524 |
+
width: Optional[int] = None,
|
525 |
+
num_inference_steps: int = 50,
|
526 |
+
sigmas: Optional[List[float]] = None,
|
527 |
+
guidance_scale: Optional[float] = None,
|
528 |
+
num_images_per_prompt: int = 1,
|
529 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
530 |
+
latents: Optional[torch.Tensor] = None,
|
531 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
532 |
+
prompt_embeds_mask: Optional[torch.Tensor] = None,
|
533 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
534 |
+
negative_prompt_embeds_mask: Optional[torch.Tensor] = None,
|
535 |
+
output_type: Optional[str] = "pil",
|
536 |
+
return_dict: bool = True,
|
537 |
+
attention_kwargs: Optional[Dict[str, Any]] = None,
|
538 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
539 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
540 |
+
max_sequence_length: int = 512,
|
541 |
+
):
|
542 |
+
r"""
|
543 |
+
Function invoked when calling the pipeline for generation.
|
544 |
+
|
545 |
+
Args:
|
546 |
+
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
|
547 |
+
`Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
|
548 |
+
numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
|
549 |
+
or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
|
550 |
+
list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image
|
551 |
+
latents as `image`, but if passing latents directly it is not encoded again.
|
552 |
+
prompt (`str` or `List[str]`, *optional*):
|
553 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
554 |
+
instead.
|
555 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
556 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
557 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `true_cfg_scale` is
|
558 |
+
not greater than `1`).
|
559 |
+
true_cfg_scale (`float`, *optional*, defaults to 1.0):
|
560 |
+
true_cfg_scale (`float`, *optional*, defaults to 1.0): Guidance scale as defined in [Classifier-Free
|
561 |
+
Diffusion Guidance](https://huggingface.co/papers/2207.12598). `true_cfg_scale` is defined as `w` of
|
562 |
+
equation 2. of [Imagen Paper](https://huggingface.co/papers/2205.11487). Classifier-free guidance is
|
563 |
+
enabled by setting `true_cfg_scale > 1` and a provided `negative_prompt`. Higher guidance scale
|
564 |
+
encourages to generate images that are closely linked to the text `prompt`, usually at the expense of
|
565 |
+
lower image quality.
|
566 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
567 |
+
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
568 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
569 |
+
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
570 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
571 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
572 |
+
expense of slower inference.
|
573 |
+
sigmas (`List[float]`, *optional*):
|
574 |
+
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
575 |
+
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
576 |
+
will be used.
|
577 |
+
guidance_scale (`float`, *optional*, defaults to None):
|
578 |
+
A guidance scale value for guidance distilled models. Unlike the traditional classifier-free guidance
|
579 |
+
where the guidance scale is applied during inference through noise prediction rescaling, guidance
|
580 |
+
distilled models take the guidance scale directly as an input parameter during forward pass. Guidance
|
581 |
+
scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images
|
582 |
+
that are closely linked to the text `prompt`, usually at the expense of lower image quality. This
|
583 |
+
parameter in the pipeline is there to support future guidance-distilled models when they come up. It is
|
584 |
+
ignored when not using guidance distilled models. To enable traditional classifier-free guidance,
|
585 |
+
please pass `true_cfg_scale > 1.0` and `negative_prompt` (even an empty negative prompt like " " should
|
586 |
+
enable classifier-free guidance computations).
|
587 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
588 |
+
The number of images to generate per prompt.
|
589 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
590 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
591 |
+
to make generation deterministic.
|
592 |
+
latents (`torch.Tensor`, *optional*):
|
593 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
594 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
595 |
+
tensor will be generated by sampling using the supplied random `generator`.
|
596 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
597 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
598 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
599 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
600 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
601 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
602 |
+
argument.
|
603 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
604 |
+
The output format of the generate image. Choose between
|
605 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
606 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
607 |
+
Whether or not to return a [`~pipelines.qwenimage.QwenImagePipelineOutput`] instead of a plain tuple.
|
608 |
+
attention_kwargs (`dict`, *optional*):
|
609 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
610 |
+
`self.processor` in
|
611 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
612 |
+
callback_on_step_end (`Callable`, *optional*):
|
613 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
614 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
615 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
616 |
+
`callback_on_step_end_tensor_inputs`.
|
617 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
618 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
619 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
620 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
621 |
+
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
|
622 |
+
|
623 |
+
Examples:
|
624 |
+
|
625 |
+
Returns:
|
626 |
+
[`~pipelines.qwenimage.QwenImagePipelineOutput`] or `tuple`:
|
627 |
+
[`~pipelines.qwenimage.QwenImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When
|
628 |
+
returning a tuple, the first element is a list with the generated images.
|
629 |
+
"""
|
630 |
+
image_size = image[-1].size if isinstance(image, list) else image.size
|
631 |
+
calculated_width, calculated_height = calculate_dimensions(1024 * 1024, image_size[0] / image_size[1])
|
632 |
+
height = height or calculated_height
|
633 |
+
width = width or calculated_width
|
634 |
+
|
635 |
+
multiple_of = self.vae_scale_factor * 2
|
636 |
+
width = width // multiple_of * multiple_of
|
637 |
+
height = height // multiple_of * multiple_of
|
638 |
+
|
639 |
+
# 1. Check inputs. Raise error if not correct
|
640 |
+
self.check_inputs(
|
641 |
+
prompt,
|
642 |
+
height,
|
643 |
+
width,
|
644 |
+
negative_prompt=negative_prompt,
|
645 |
+
prompt_embeds=prompt_embeds,
|
646 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
647 |
+
prompt_embeds_mask=prompt_embeds_mask,
|
648 |
+
negative_prompt_embeds_mask=negative_prompt_embeds_mask,
|
649 |
+
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
650 |
+
max_sequence_length=max_sequence_length,
|
651 |
+
)
|
652 |
+
|
653 |
+
self._guidance_scale = guidance_scale
|
654 |
+
self._attention_kwargs = attention_kwargs
|
655 |
+
self._current_timestep = None
|
656 |
+
self._interrupt = False
|
657 |
+
|
658 |
+
# 2. Define call parameters
|
659 |
+
if prompt is not None and isinstance(prompt, str):
|
660 |
+
batch_size = 1
|
661 |
+
elif prompt is not None and isinstance(prompt, list):
|
662 |
+
batch_size = len(prompt)
|
663 |
+
else:
|
664 |
+
batch_size = prompt_embeds.shape[0]
|
665 |
+
|
666 |
+
device = self._execution_device
|
667 |
+
# 3. Preprocess image
|
668 |
+
if image is not None and not (isinstance(image, torch.Tensor) and image.size(1) == self.latent_channels):
|
669 |
+
if not isinstance(image, list):
|
670 |
+
image = [image]
|
671 |
+
condition_image_sizes = []
|
672 |
+
condition_images = []
|
673 |
+
vae_image_sizes = []
|
674 |
+
vae_images = []
|
675 |
+
for img in image:
|
676 |
+
image_width, image_height = img.size
|
677 |
+
condition_width, condition_height = calculate_dimensions(
|
678 |
+
CONDITION_IMAGE_SIZE, image_width / image_height
|
679 |
+
)
|
680 |
+
vae_width, vae_height = calculate_dimensions(VAE_IMAGE_SIZE, image_width / image_height)
|
681 |
+
condition_image_sizes.append((condition_width, condition_height))
|
682 |
+
vae_image_sizes.append((vae_width, vae_height))
|
683 |
+
condition_images.append(self.image_processor.resize(img, condition_height, condition_width))
|
684 |
+
vae_images.append(self.image_processor.preprocess(img, vae_height, vae_width).unsqueeze(2))
|
685 |
+
|
686 |
+
has_neg_prompt = negative_prompt is not None or (
|
687 |
+
negative_prompt_embeds is not None and negative_prompt_embeds_mask is not None
|
688 |
+
)
|
689 |
+
|
690 |
+
if true_cfg_scale > 1 and not has_neg_prompt:
|
691 |
+
logger.warning(
|
692 |
+
f"true_cfg_scale is passed as {true_cfg_scale}, but classifier-free guidance is not enabled since no negative_prompt is provided."
|
693 |
+
)
|
694 |
+
elif true_cfg_scale <= 1 and has_neg_prompt:
|
695 |
+
logger.warning(
|
696 |
+
" negative_prompt is passed but classifier-free guidance is not enabled since true_cfg_scale <= 1"
|
697 |
+
)
|
698 |
+
|
699 |
+
do_true_cfg = true_cfg_scale > 1 and has_neg_prompt
|
700 |
+
prompt_embeds, prompt_embeds_mask = self.encode_prompt(
|
701 |
+
image=condition_images,
|
702 |
+
prompt=prompt,
|
703 |
+
prompt_embeds=prompt_embeds,
|
704 |
+
prompt_embeds_mask=prompt_embeds_mask,
|
705 |
+
device=device,
|
706 |
+
num_images_per_prompt=num_images_per_prompt,
|
707 |
+
max_sequence_length=max_sequence_length,
|
708 |
+
)
|
709 |
+
if do_true_cfg:
|
710 |
+
negative_prompt_embeds, negative_prompt_embeds_mask = self.encode_prompt(
|
711 |
+
image=condition_images,
|
712 |
+
prompt=negative_prompt,
|
713 |
+
prompt_embeds=negative_prompt_embeds,
|
714 |
+
prompt_embeds_mask=negative_prompt_embeds_mask,
|
715 |
+
device=device,
|
716 |
+
num_images_per_prompt=num_images_per_prompt,
|
717 |
+
max_sequence_length=max_sequence_length,
|
718 |
+
)
|
719 |
+
|
720 |
+
# 4. Prepare latent variables
|
721 |
+
num_channels_latents = self.transformer.config.in_channels // 4
|
722 |
+
latents, image_latents = self.prepare_latents(
|
723 |
+
vae_images,
|
724 |
+
batch_size * num_images_per_prompt,
|
725 |
+
num_channels_latents,
|
726 |
+
height,
|
727 |
+
width,
|
728 |
+
prompt_embeds.dtype,
|
729 |
+
device,
|
730 |
+
generator,
|
731 |
+
latents,
|
732 |
+
)
|
733 |
+
img_shapes = [
|
734 |
+
[
|
735 |
+
(1, height // self.vae_scale_factor // 2, width // self.vae_scale_factor // 2),
|
736 |
+
*[
|
737 |
+
(1, vae_height // self.vae_scale_factor // 2, vae_width // self.vae_scale_factor // 2)
|
738 |
+
for vae_width, vae_height in vae_image_sizes
|
739 |
+
],
|
740 |
+
]
|
741 |
+
] * batch_size
|
742 |
+
|
743 |
+
# 5. Prepare timesteps
|
744 |
+
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
|
745 |
+
image_seq_len = latents.shape[1]
|
746 |
+
mu = calculate_shift(
|
747 |
+
image_seq_len,
|
748 |
+
self.scheduler.config.get("base_image_seq_len", 256),
|
749 |
+
self.scheduler.config.get("max_image_seq_len", 4096),
|
750 |
+
self.scheduler.config.get("base_shift", 0.5),
|
751 |
+
self.scheduler.config.get("max_shift", 1.15),
|
752 |
+
)
|
753 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
754 |
+
self.scheduler,
|
755 |
+
num_inference_steps,
|
756 |
+
device,
|
757 |
+
sigmas=sigmas,
|
758 |
+
mu=mu,
|
759 |
+
)
|
760 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
761 |
+
self._num_timesteps = len(timesteps)
|
762 |
+
|
763 |
+
# handle guidance
|
764 |
+
if self.transformer.config.guidance_embeds and guidance_scale is None:
|
765 |
+
raise ValueError("guidance_scale is required for guidance-distilled model.")
|
766 |
+
elif self.transformer.config.guidance_embeds:
|
767 |
+
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
|
768 |
+
guidance = guidance.expand(latents.shape[0])
|
769 |
+
elif not self.transformer.config.guidance_embeds and guidance_scale is not None:
|
770 |
+
logger.warning(
|
771 |
+
f"guidance_scale is passed as {guidance_scale}, but ignored since the model is not guidance-distilled."
|
772 |
+
)
|
773 |
+
guidance = None
|
774 |
+
elif not self.transformer.config.guidance_embeds and guidance_scale is None:
|
775 |
+
guidance = None
|
776 |
+
|
777 |
+
if self.attention_kwargs is None:
|
778 |
+
self._attention_kwargs = {}
|
779 |
+
|
780 |
+
txt_seq_lens = prompt_embeds_mask.sum(dim=1).tolist() if prompt_embeds_mask is not None else None
|
781 |
+
|
782 |
+
image_rotary_emb = self.transformer.pos_embed(img_shapes, txt_seq_lens, device=latents.device)
|
783 |
+
if do_true_cfg:
|
784 |
+
negative_txt_seq_lens = (
|
785 |
+
negative_prompt_embeds_mask.sum(dim=1).tolist()
|
786 |
+
if negative_prompt_embeds_mask is not None
|
787 |
+
else None
|
788 |
+
)
|
789 |
+
uncond_image_rotary_emb = self.transformer.pos_embed(
|
790 |
+
img_shapes, negative_txt_seq_lens, device=latents.device
|
791 |
+
)
|
792 |
+
else:
|
793 |
+
uncond_image_rotary_emb = None
|
794 |
+
|
795 |
+
# 6. Denoising loop
|
796 |
+
self.scheduler.set_begin_index(0)
|
797 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
798 |
+
for i, t in enumerate(timesteps):
|
799 |
+
if self.interrupt:
|
800 |
+
continue
|
801 |
+
|
802 |
+
self._current_timestep = t
|
803 |
+
|
804 |
+
latent_model_input = latents
|
805 |
+
if image_latents is not None:
|
806 |
+
latent_model_input = torch.cat([latents, image_latents], dim=1)
|
807 |
+
|
808 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
809 |
+
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
810 |
+
with self.transformer.cache_context("cond"):
|
811 |
+
noise_pred = self.transformer(
|
812 |
+
hidden_states=latent_model_input,
|
813 |
+
timestep=timestep / 1000,
|
814 |
+
guidance=guidance,
|
815 |
+
encoder_hidden_states_mask=prompt_embeds_mask,
|
816 |
+
encoder_hidden_states=prompt_embeds,
|
817 |
+
image_rotary_emb=image_rotary_emb,
|
818 |
+
attention_kwargs=self.attention_kwargs,
|
819 |
+
return_dict=False,
|
820 |
+
)[0]
|
821 |
+
noise_pred = noise_pred[:, : latents.size(1)]
|
822 |
+
|
823 |
+
if do_true_cfg:
|
824 |
+
with self.transformer.cache_context("uncond"):
|
825 |
+
neg_noise_pred = self.transformer(
|
826 |
+
hidden_states=latent_model_input,
|
827 |
+
timestep=timestep / 1000,
|
828 |
+
guidance=guidance,
|
829 |
+
encoder_hidden_states_mask=negative_prompt_embeds_mask,
|
830 |
+
encoder_hidden_states=negative_prompt_embeds,
|
831 |
+
image_rotary_emb=uncond_image_rotary_emb,
|
832 |
+
attention_kwargs=self.attention_kwargs,
|
833 |
+
return_dict=False,
|
834 |
+
)[0]
|
835 |
+
neg_noise_pred = neg_noise_pred[:, : latents.size(1)]
|
836 |
+
comb_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred)
|
837 |
+
|
838 |
+
cond_norm = torch.norm(noise_pred, dim=-1, keepdim=True)
|
839 |
+
noise_norm = torch.norm(comb_pred, dim=-1, keepdim=True)
|
840 |
+
noise_pred = comb_pred * (cond_norm / noise_norm)
|
841 |
+
|
842 |
+
# compute the previous noisy sample x_t -> x_t-1
|
843 |
+
latents_dtype = latents.dtype
|
844 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
845 |
+
|
846 |
+
if latents.dtype != latents_dtype:
|
847 |
+
if torch.backends.mps.is_available():
|
848 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
849 |
+
latents = latents.to(latents_dtype)
|
850 |
+
|
851 |
+
if callback_on_step_end is not None:
|
852 |
+
callback_kwargs = {}
|
853 |
+
for k in callback_on_step_end_tensor_inputs:
|
854 |
+
callback_kwargs[k] = locals()[k]
|
855 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
856 |
+
|
857 |
+
latents = callback_outputs.pop("latents", latents)
|
858 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
859 |
+
|
860 |
+
# call the callback, if provided
|
861 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
862 |
+
progress_bar.update()
|
863 |
+
|
864 |
+
if XLA_AVAILABLE:
|
865 |
+
xm.mark_step()
|
866 |
+
|
867 |
+
self._current_timestep = None
|
868 |
+
if output_type == "latent":
|
869 |
+
image = latents
|
870 |
+
else:
|
871 |
+
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
872 |
+
latents = latents.to(self.vae.dtype)
|
873 |
+
latents_mean = (
|
874 |
+
torch.tensor(self.vae.config.latents_mean)
|
875 |
+
.view(1, self.vae.config.z_dim, 1, 1, 1)
|
876 |
+
.to(latents.device, latents.dtype)
|
877 |
+
)
|
878 |
+
latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to(
|
879 |
+
latents.device, latents.dtype
|
880 |
+
)
|
881 |
+
latents = latents / latents_std + latents_mean
|
882 |
+
image = self.vae.decode(latents, return_dict=False)[0][:, :, 0]
|
883 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
884 |
+
|
885 |
+
# Offload all models
|
886 |
+
self.maybe_free_model_hooks()
|
887 |
+
|
888 |
+
if not return_dict:
|
889 |
+
return (image,)
|
890 |
+
|
891 |
+
return QwenImagePipelineOutput(images=image)
|