|
import torch |
|
|
|
import commons |
|
import utils |
|
from models import SynthesizerTrn |
|
from models_jp_extra import SynthesizerTrn as SynthesizerTrnJPExtra |
|
from text import cleaned_text_to_sequence, get_bert |
|
from text.cleaner import clean_text |
|
from text.symbols import symbols |
|
from common.log import logger |
|
|
|
|
|
class InvalidToneError(ValueError): |
|
pass |
|
|
|
|
|
def get_net_g(model_path: str, version: str, device: str, hps): |
|
if version.endswith("JP-Extra"): |
|
logger.info("Using JP-Extra model") |
|
net_g = SynthesizerTrnJPExtra( |
|
len(symbols), |
|
hps.data.filter_length // 2 + 1, |
|
hps.train.segment_size // hps.data.hop_length, |
|
n_speakers=hps.data.n_speakers, |
|
**hps.model, |
|
).to(device) |
|
else: |
|
logger.info("Using normal model") |
|
net_g = SynthesizerTrn( |
|
len(symbols), |
|
hps.data.filter_length // 2 + 1, |
|
hps.train.segment_size // hps.data.hop_length, |
|
n_speakers=hps.data.n_speakers, |
|
**hps.model, |
|
).to(device) |
|
net_g.state_dict() |
|
_ = net_g.eval() |
|
if model_path.endswith(".pth") or model_path.endswith(".pt"): |
|
_ = utils.load_checkpoint(model_path, net_g, None, skip_optimizer=True) |
|
elif model_path.endswith(".safetensors"): |
|
_ = utils.load_safetensors(model_path, net_g, True) |
|
else: |
|
raise ValueError(f"Unknown model format: {model_path}") |
|
return net_g |
|
|
|
|
|
def get_text( |
|
text, |
|
language_str, |
|
hps, |
|
device, |
|
assist_text=None, |
|
assist_text_weight=0.7, |
|
given_tone=None, |
|
ignore_unknown=False, |
|
): |
|
use_jp_extra = hps.version.endswith("JP-Extra") |
|
norm_text, phone, tone, word2ph = clean_text( |
|
text, language_str, use_jp_extra, ignore_unknown=ignore_unknown |
|
) |
|
if given_tone is not None: |
|
if len(given_tone) != len(phone): |
|
raise InvalidToneError( |
|
f"Length of given_tone ({len(given_tone)}) != length of phone ({len(phone)})" |
|
) |
|
tone = given_tone |
|
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str) |
|
|
|
if hps.data.add_blank: |
|
phone = commons.intersperse(phone, 0) |
|
tone = commons.intersperse(tone, 0) |
|
language = commons.intersperse(language, 0) |
|
for i in range(len(word2ph)): |
|
word2ph[i] = word2ph[i] * 2 |
|
word2ph[0] += 1 |
|
bert_ori = get_bert( |
|
norm_text, |
|
word2ph, |
|
language_str, |
|
device, |
|
assist_text, |
|
assist_text_weight, |
|
ignore_unknown, |
|
) |
|
del word2ph |
|
assert bert_ori.shape[-1] == len(phone), phone |
|
|
|
if language_str == "ZH": |
|
bert = bert_ori |
|
ja_bert = torch.zeros(1024, len(phone)) |
|
en_bert = torch.zeros(1024, len(phone)) |
|
elif language_str == "JP": |
|
bert = torch.zeros(1024, len(phone)) |
|
ja_bert = bert_ori |
|
en_bert = torch.zeros(1024, len(phone)) |
|
elif language_str == "EN": |
|
bert = torch.zeros(1024, len(phone)) |
|
ja_bert = torch.zeros(1024, len(phone)) |
|
en_bert = bert_ori |
|
else: |
|
raise ValueError("language_str should be ZH, JP or EN") |
|
|
|
assert bert.shape[-1] == len( |
|
phone |
|
), f"Bert seq len {bert.shape[-1]} != {len(phone)}" |
|
|
|
phone = torch.LongTensor(phone) |
|
tone = torch.LongTensor(tone) |
|
language = torch.LongTensor(language) |
|
return bert, ja_bert, en_bert, phone, tone, language |
|
|
|
|
|
def infer( |
|
text, |
|
style_vec, |
|
sdp_ratio, |
|
noise_scale, |
|
noise_scale_w, |
|
length_scale, |
|
sid: int, |
|
language, |
|
hps, |
|
net_g, |
|
device, |
|
skip_start=False, |
|
skip_end=False, |
|
assist_text=None, |
|
assist_text_weight=0.7, |
|
given_tone=None, |
|
ignore_unknown=False, |
|
): |
|
is_jp_extra = hps.version.endswith("JP-Extra") |
|
bert, ja_bert, en_bert, phones, tones, lang_ids = get_text( |
|
text, |
|
language, |
|
hps, |
|
device, |
|
assist_text=assist_text, |
|
assist_text_weight=assist_text_weight, |
|
given_tone=given_tone, |
|
ignore_unknown=ignore_unknown, |
|
) |
|
if skip_start: |
|
phones = phones[3:] |
|
tones = tones[3:] |
|
lang_ids = lang_ids[3:] |
|
bert = bert[:, 3:] |
|
ja_bert = ja_bert[:, 3:] |
|
en_bert = en_bert[:, 3:] |
|
if skip_end: |
|
phones = phones[:-2] |
|
tones = tones[:-2] |
|
lang_ids = lang_ids[:-2] |
|
bert = bert[:, :-2] |
|
ja_bert = ja_bert[:, :-2] |
|
en_bert = en_bert[:, :-2] |
|
with torch.no_grad(): |
|
x_tst = phones.to(device).unsqueeze(0) |
|
tones = tones.to(device).unsqueeze(0) |
|
lang_ids = lang_ids.to(device).unsqueeze(0) |
|
bert = bert.to(device).unsqueeze(0) |
|
ja_bert = ja_bert.to(device).unsqueeze(0) |
|
en_bert = en_bert.to(device).unsqueeze(0) |
|
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device) |
|
style_vec = torch.from_numpy(style_vec).to(device).unsqueeze(0) |
|
del phones |
|
sid_tensor = torch.LongTensor([sid]).to(device) |
|
if is_jp_extra: |
|
output = net_g.infer( |
|
x_tst, |
|
x_tst_lengths, |
|
sid_tensor, |
|
tones, |
|
lang_ids, |
|
ja_bert, |
|
style_vec=style_vec, |
|
sdp_ratio=sdp_ratio, |
|
noise_scale=noise_scale, |
|
noise_scale_w=noise_scale_w, |
|
length_scale=length_scale, |
|
) |
|
else: |
|
output = net_g.infer( |
|
x_tst, |
|
x_tst_lengths, |
|
sid_tensor, |
|
tones, |
|
lang_ids, |
|
bert, |
|
ja_bert, |
|
en_bert, |
|
style_vec=style_vec, |
|
sdp_ratio=sdp_ratio, |
|
noise_scale=noise_scale, |
|
noise_scale_w=noise_scale_w, |
|
length_scale=length_scale, |
|
) |
|
audio = output[0][0, 0].data.cpu().float().numpy() |
|
del ( |
|
x_tst, |
|
tones, |
|
lang_ids, |
|
bert, |
|
x_tst_lengths, |
|
sid_tensor, |
|
ja_bert, |
|
en_bert, |
|
style_vec, |
|
) |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
return audio |
|
|
|
|
|
def infer_multilang( |
|
text, |
|
style_vec, |
|
sdp_ratio, |
|
noise_scale, |
|
noise_scale_w, |
|
length_scale, |
|
sid, |
|
language, |
|
hps, |
|
net_g, |
|
device, |
|
skip_start=False, |
|
skip_end=False, |
|
): |
|
bert, ja_bert, en_bert, phones, tones, lang_ids = [], [], [], [], [], [] |
|
|
|
|
|
|
|
|
|
|
|
|
|
for idx, (txt, lang) in enumerate(zip(text, language)): |
|
_skip_start = (idx != 0) or (skip_start and idx == 0) |
|
_skip_end = (idx != len(language) - 1) or skip_end |
|
( |
|
temp_bert, |
|
temp_ja_bert, |
|
temp_en_bert, |
|
temp_phones, |
|
temp_tones, |
|
temp_lang_ids, |
|
) = get_text(txt, lang, hps, device) |
|
if _skip_start: |
|
temp_bert = temp_bert[:, 3:] |
|
temp_ja_bert = temp_ja_bert[:, 3:] |
|
temp_en_bert = temp_en_bert[:, 3:] |
|
temp_phones = temp_phones[3:] |
|
temp_tones = temp_tones[3:] |
|
temp_lang_ids = temp_lang_ids[3:] |
|
if _skip_end: |
|
temp_bert = temp_bert[:, :-2] |
|
temp_ja_bert = temp_ja_bert[:, :-2] |
|
temp_en_bert = temp_en_bert[:, :-2] |
|
temp_phones = temp_phones[:-2] |
|
temp_tones = temp_tones[:-2] |
|
temp_lang_ids = temp_lang_ids[:-2] |
|
bert.append(temp_bert) |
|
ja_bert.append(temp_ja_bert) |
|
en_bert.append(temp_en_bert) |
|
phones.append(temp_phones) |
|
tones.append(temp_tones) |
|
lang_ids.append(temp_lang_ids) |
|
bert = torch.concatenate(bert, dim=1) |
|
ja_bert = torch.concatenate(ja_bert, dim=1) |
|
en_bert = torch.concatenate(en_bert, dim=1) |
|
phones = torch.concatenate(phones, dim=0) |
|
tones = torch.concatenate(tones, dim=0) |
|
lang_ids = torch.concatenate(lang_ids, dim=0) |
|
with torch.no_grad(): |
|
x_tst = phones.to(device).unsqueeze(0) |
|
tones = tones.to(device).unsqueeze(0) |
|
lang_ids = lang_ids.to(device).unsqueeze(0) |
|
bert = bert.to(device).unsqueeze(0) |
|
ja_bert = ja_bert.to(device).unsqueeze(0) |
|
en_bert = en_bert.to(device).unsqueeze(0) |
|
|
|
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device) |
|
del phones |
|
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device) |
|
audio = ( |
|
net_g.infer( |
|
x_tst, |
|
x_tst_lengths, |
|
speakers, |
|
tones, |
|
lang_ids, |
|
bert, |
|
ja_bert, |
|
en_bert, |
|
style_vec=style_vec, |
|
sdp_ratio=sdp_ratio, |
|
noise_scale=noise_scale, |
|
noise_scale_w=noise_scale_w, |
|
length_scale=length_scale, |
|
)[0][0, 0] |
|
.data.cpu() |
|
.float() |
|
.numpy() |
|
) |
|
del ( |
|
x_tst, |
|
tones, |
|
lang_ids, |
|
bert, |
|
x_tst_lengths, |
|
speakers, |
|
ja_bert, |
|
en_bert, |
|
) |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
return audio |
|
|