Spaces:
Build error
Build error
File size: 17,413 Bytes
0a969f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 |
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import validators, re
import torch
from fake_useragent import UserAgent
from bs4 import BeautifulSoup
import streamlit as st
from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer
from sentence_transformers import SentenceTransformer
import en_core_web_lg
import time
import base64
import requests
import docx2txt
from io import StringIO
from PyPDF2 import PdfFileReader
import warnings
import nltk
import itertools
import numpy as np
nltk.download('punkt')
from nltk import sent_tokenize
warnings.filterwarnings("ignore")
# In[2]:
time_str = time.strftime("%d%m%Y-%H%M%S")
HTML_WRAPPER = """<div style="overflow-x: auto; border: 1px solid #e6e9ef; border-radius: 0.25rem; padding: 1rem;
margin-bottom: 2.5rem">{}</div> """
#Functions
def article_text_extractor(url: str):
'''Extract text from url and divide text into chunks if length of text is more than 500 words'''
ua = UserAgent()
headers = {'User-Agent':str(ua.chrome)}
r = requests.get(url,headers=headers)
soup = BeautifulSoup(r.text, "html.parser")
title_text = soup.find_all(["h1"])
para_text = soup.find_all(["p"])
article_text = [result.text for result in para_text]
try:
article_header = [result.text for result in title_text][0]
except:
article_header = ''
article = nlp(" ".join(article_text))
sentences = [i.text for i in list(article.sents)]
current_chunk = 0
chunks = []
for sentence in sentences:
if len(chunks) == current_chunk + 1:
if len(chunks[current_chunk]) + len(sentence.split(" ")) <= 500:
chunks[current_chunk].extend(sentence.split(" "))
else:
current_chunk += 1
chunks.append(sentence.split(" "))
else:
chunks.append(sentence.split(" "))
for chunk_id in range(len(chunks)):
chunks[chunk_id] = " ".join(chunks[chunk_id])
return article_header, chunks
def chunk_clean_text(text):
"""Chunk text longer than 500 tokens"""
article = nlp(text)
sentences = [i.text for i in list(article.sents)]
current_chunk = 0
chunks = []
for sentence in sentences:
if len(chunks) == current_chunk + 1:
if len(chunks[current_chunk]) + len(sentence.split(" ")) <= 500:
chunks[current_chunk].extend(sentence.split(" "))
else:
current_chunk += 1
chunks.append(sentence.split(" "))
else:
chunks.append(sentence.split(" "))
for chunk_id in range(len(chunks)):
chunks[chunk_id] = " ".join(chunks[chunk_id])
return chunks
def preprocess_plain_text(x):
x = x.encode("ascii", "ignore").decode() # unicode
x = re.sub(r"https*\S+", " ", x) # url
x = re.sub(r"@\S+", " ", x) # mentions
x = re.sub(r"#\S+", " ", x) # hastags
x = re.sub(r"\s{2,}", " ", x) # over spaces
x = re.sub("[^.,!?A-Za-z0-9]+", " ", x) # special charachters except .,!?
return x
def extract_pdf(file):
'''Extract text from PDF file'''
pdfReader = PdfFileReader(file)
count = pdfReader.numPages
all_text = ""
for i in range(count):
page = pdfReader.getPage(i)
all_text += page.extractText()
return all_text
def extract_text_from_file(file):
'''Extract text from uploaded file'''
# read text file
if file.type == "text/plain":
# To convert to a string based IO:
stringio = StringIO(file.getvalue().decode("utf-8"))
# To read file as string:
file_text = stringio.read()
# read pdf file
elif file.type == "application/pdf":
file_text = extract_pdf(file)
# read docx file
elif (
file.type
== "application/vnd.openxmlformats-officedocument.wordprocessingml.document"
):
file_text = docx2txt.process(file)
return file_text
def summary_downloader(raw_text):
b64 = base64.b64encode(raw_text.encode()).decode()
new_filename = "new_text_file_{}_.txt".format(time_str)
st.markdown("#### Download Summary as a File ###")
href = f'<a href="data:file/txt;base64,{b64}" download="{new_filename}">Click to Download!!</a>'
st.markdown(href,unsafe_allow_html=True)
def get_all_entities_per_sentence(text):
doc = nlp(''.join(text))
sentences = list(doc.sents)
entities_all_sentences = []
for sentence in sentences:
entities_this_sentence = []
# SPACY ENTITIES
for entity in sentence.ents:
entities_this_sentence.append(str(entity))
# FLAIR ENTITIES (CURRENTLY NOT USED)
# sentence_entities = Sentence(str(sentence))
# tagger.predict(sentence_entities)
# for entity in sentence_entities.get_spans('ner'):
# entities_this_sentence.append(entity.text)
# XLM ENTITIES
entities_xlm = [entity["word"] for entity in ner_model(str(sentence))]
for entity in entities_xlm:
entities_this_sentence.append(str(entity))
entities_all_sentences.append(entities_this_sentence)
return entities_all_sentences
def get_all_entities(text):
all_entities_per_sentence = get_all_entities_per_sentence(text)
return list(itertools.chain.from_iterable(all_entities_per_sentence))
def get_and_compare_entities(article_content,summary_output):
all_entities_per_sentence = get_all_entities_per_sentence(article_content)
entities_article = list(itertools.chain.from_iterable(all_entities_per_sentence))
all_entities_per_sentence = get_all_entities_per_sentence(summary_output)
entities_summary = list(itertools.chain.from_iterable(all_entities_per_sentence))
matched_entities = []
unmatched_entities = []
for entity in entities_summary:
if any(entity.lower() in substring_entity.lower() for substring_entity in entities_article):
matched_entities.append(entity)
elif any(
np.inner(sentence_embedding_model.encode(entity, show_progress_bar=False),
sentence_embedding_model.encode(art_entity, show_progress_bar=False)) > 0.9 for
art_entity in entities_article):
matched_entities.append(entity)
else:
unmatched_entities.append(entity)
matched_entities = list(dict.fromkeys(matched_entities))
unmatched_entities = list(dict.fromkeys(unmatched_entities))
matched_entities_to_remove = []
unmatched_entities_to_remove = []
for entity in matched_entities:
for substring_entity in matched_entities:
if entity != substring_entity and entity.lower() in substring_entity.lower():
matched_entities_to_remove.append(entity)
for entity in unmatched_entities:
for substring_entity in unmatched_entities:
if entity != substring_entity and entity.lower() in substring_entity.lower():
unmatched_entities_to_remove.append(entity)
matched_entities_to_remove = list(dict.fromkeys(matched_entities_to_remove))
unmatched_entities_to_remove = list(dict.fromkeys(unmatched_entities_to_remove))
for entity in matched_entities_to_remove:
matched_entities.remove(entity)
for entity in unmatched_entities_to_remove:
unmatched_entities.remove(entity)
return matched_entities, unmatched_entities
def highlight_entities(article_content,summary_output):
markdown_start_red = "<mark class=\"entity\" style=\"background: rgb(238, 135, 135);\">"
markdown_start_green = "<mark class=\"entity\" style=\"background: rgb(121, 236, 121);\">"
markdown_end = "</mark>"
matched_entities, unmatched_entities = get_and_compare_entities(article_content,summary_output)
print(summary_output)
for entity in matched_entities:
summary_output = re.sub(f'({entity})(?![^rgb\(]*\))',markdown_start_green + entity + markdown_end,summary_output)
for entity in unmatched_entities:
summary_output = re.sub(f'({entity})(?![^rgb\(]*\))',markdown_start_red + entity + markdown_end,summary_output)
print("")
print(summary_output)
print("")
print(summary_output)
soup = BeautifulSoup(summary_output, features="html.parser")
return HTML_WRAPPER.format(soup)
def clean_text(text,doc=False,plain_text=False,url=False):
"""Return clean text from the various input sources"""
if url:
is_url = validators.url(text)
if is_url:
# complete text, chunks to summarize (list of sentences for long docs)
article_title,chunks = article_text_extractor(url=url_text)
return article_title, chunks
elif doc:
clean_text = chunk_clean_text(preprocess_plain_text(extract_text_from_file(text)))
return None, clean_text
elif plain_text:
clean_text = chunk_clean_text(preprocess_plain_text(text))
return None, clean_text
@st.experimental_singleton(suppress_st_warning=True)
def get_spacy():
nlp = en_core_web_lg.load()
return nlp
@st.experimental_singleton(suppress_st_warning=True)
def facebook_model():
model_name = 'facebook/bart-large-cnn'
summarizer = pipeline('summarization',model=model_name,tokenizer=model_name,
device=0 if torch.cuda.is_available() else -1)
return summarizer
@st.experimental_singleton(suppress_st_warning=True)
def schleifer_model():
model_name = 'sshleifer/distilbart-cnn-12-6'
summarizer = pipeline('summarization',model=model_name, tokenizer=model_name,
device=0 if torch.cuda.is_available() else -1)
return summarizer
@st.experimental_singleton(suppress_st_warning=True)
def google_model():
model_name = 'google/pegasus-large'
summarizer = pipeline('summarization',model=model_name, tokenizer=model_name,
device=0 if torch.cuda.is_available() else -1)
return summarizer
@st.experimental_singleton(suppress_st_warning=True)
def get_sentence_embedding_model():
return SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
@st.experimental_singleton(suppress_st_warning=True)
def get_ner_pipeline():
tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
model = AutoModelForTokenClassification.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
return pipeline("ner", model=model, tokenizer=tokenizer, grouped_entities=True)
# Load all different models (cached) at start time of the hugginface space
sentence_embedding_model = get_sentence_embedding_model()
ner_model = get_ner_pipeline()
nlp = get_spacy()
#Streamlit App
st.title("Article Text and Link Extractive Summarizer with Entity Matching 📝")
model_type = st.sidebar.selectbox(
"Model type", options=["Facebook-Bart", "Sshleifer-DistilBart","Google-Pegasus"]
)
max_len= st.sidebar.slider("Maximum length of the summarized text",min_value=100,max_value=500,step=10)
min_len= st.sidebar.slider("Minimum length of the summarized text",min_value=50,max_value=200,step=10)
st.markdown(
"Model Source: [Facebook-Bart-large-CNN](https://huggingface.co/facebook/bart-large-cnn), [Sshleifer-distilbart-cnn-12-6](https://huggingface.co/sshleifer/distilbart-cnn-12-6) and [Google-Pegasus-large](https://huggingface.co/google/pegasus-large)"
)
st.markdown(
"""The app supports extractive summarization which aims to identify the salient information that is then extracted and grouped together to form a concise summary.
For documents or text that is more than 500 words long, the app will divide the text into chunks and summarize each chunk. Please note when using the sidebar slider, those values represent the min/max text length per chunk of text to be summarized. If your article to be summarized is 1000 words, it will be divided into two chunks of 500 words first then the default max length of 100 words is applied per chunk, resulting in a summarized text with 200 words maximum.
There are two models available to choose from:""")
st.markdown("""
- Facebook-Bart, trained on large [CNN and Daily Mail](https://huggingface.co/datasets/cnn_dailymail) news articles.
- Sshleifer-Distilbart, which is a distilled (smaller) version of the large Bart model.
- Google Pegasus, trained on large C4 and HugeNews articles"""
)
st.markdown("""Please do note that the model will take longer to generate summaries for documents that are too long.""")
st.markdown(
"The app only ingests the below formats for summarization task:"
)
st.markdown(
"""- Raw text entered in text box.
- URL of an article to be summarized.
- Documents with .txt, .pdf or .docx file formats."""
)
st.markdown("---")
if "text_area" not in st.session_state:
st.session_state.text_area = ''
if "summ_area" not in st.session_state:
st.session_state.summ_area = ''
url_text = st.text_input("Please Enter a url here")
st.markdown(
"<h3 style='text-align: center; color: red;'>OR</h3>",
unsafe_allow_html=True,
)
plain_text = st.text_area("Please Paste/Enter plain text here",)
st.markdown(
"<h3 style='text-align: center; color: red;'>OR</h3>",
unsafe_allow_html=True,
)
upload_doc = st.file_uploader(
"Upload a .txt, .pdf, .docx file for summarization"
)
if url_text:
article_title, cleaned_text = clean_text(url_text, url=True)
st.session_state.text_area = cleaned_text[0]
elif plain_text:
article_title, cleaned_text = clean_text(plain_text,plain_text=True)
st.session_state.text_area = ''.join(cleaned_text)
elif upload_doc:
article_title, cleaned_text = clean_text(upload_doc,doc=True)
st.session_state.text_area = ''.join(cleaned_text)
article_text = st.text_area(
label='Full Article Text',
placeholder="Full article text will be displayed here..",
height=250,
key='text_area'
)
summarize = st.button("Summarize")
# called on toggle button [summarize]
if summarize:
if model_type == "Facebook-Bart":
if url_text:
text_to_summarize =cleaned_text[0]
else:
text_to_summarize = cleaned_text
with st.spinner(
text="Loading Facebook-Bart Model and Extracting summary. This might take a few seconds depending on the length of your text..."
):
summarizer_model = facebook_model()
summarized_text = summarizer_model(text_to_summarize, max_length=max_len, min_length=min_len,clean_up_tokenization_spaces=True,no_repeat_ngram_size=4)
summarized_text = ' '.join([summ['summary_text'] for summ in summarized_text])
elif model_type == "Sshleifer-DistilBart":
if url_text:
text_to_summarize = cleaned_text[0]
else:
text_to_summarize = cleaned_text
with st.spinner(
text="Loading Sshleifer-DistilBart Model and Extracting summary. This might take a few seconds depending on the length of your text..."
):
summarizer_model = schleifer_model()
summarized_text = summarizer_model(text_to_summarize, max_length=max_len, min_length=min_len,clean_up_tokenization_spaces=True,no_repeat_ngram_size=4)
summarized_text = ' '.join([summ['summary_text'] for summ in summarized_text])
elif model_type == "Google-Pegasus":
if url_text:
text_to_summarize = cleaned_text[0]
else:
text_to_summarize = cleaned_text
with st.spinner(
text="Loading Google-Pegasus Model and Extracting summary. This might take a few seconds depending on the length of your text..."
):
summarizer_model = google_model()
summarized_text = summarizer_model(text_to_summarize, max_length=max_len, min_length=min_len,clean_up_tokenization_spaces=True,no_repeat_ngram_size=4)
summarized_text = ' '.join([summ['summary_text'] for summ in summarized_text])
with st.spinner("Calculating and matching entities, this takes a few seconds..."):
entity_match_html = highlight_entities(text_to_summarize,summarized_text)
st.markdown("####")
print(entity_match_html)
if article_title:
# view summarized text (expander)
st.markdown(f"Article title: {article_title}")
st.session_state.summ_area = summarized_text
st.subheader('Summarized Text with no Entity Matching')
summarized_text = st.text_area(
label = '',
placeholder="Full summarized text will be displayed here..",
height=250,
key='summ_area'
)
st.markdown("####")
st.subheader("Summarized text with matched entities in Green and mismatched entities in Red relative to the Original Text")
st.write(entity_match_html, unsafe_allow_html=True)
st.markdown("####")
summary_downloader(summarized_text)
st.markdown("""
""")
st.markdown("![visitor badge](https://visitor-badge.glitch.me/badge?page_id=nickmuchi-article-text-summarizer)")
# In[ ]:
|