import gradio as gr import cv2 import numpy as np import mediapipe as mp # Initialize MediaPipe Pose mp_pose = mp.solutions.pose pose = mp_pose.Pose(static_image_mode=True) mp_drawing = mp.solutions.drawing_utils mp_pose_landmark = mp_pose.PoseLandmark def detect_pose(image): # Convert to RGB image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Run pose detection result = pose.process(image_rgb) keypoints = {} if result.pose_landmarks: # Draw landmarks on image mp_drawing.draw_landmarks(image, result.pose_landmarks, mp_pose.POSE_CONNECTIONS) # Get image dimensions height, width, _ = image.shape # Extract specific landmarks landmark_indices = { 'left_shoulder': mp_pose_landmark.LEFT_SHOULDER, 'right_shoulder': mp_pose_landmark.RIGHT_SHOULDER, 'left_hip': mp_pose_landmark.LEFT_HIP, 'right_hip': mp_pose_landmark.RIGHT_HIP } for name, index in landmark_indices.items(): lm = result.pose_landmarks.landmark[index] x, y = int(lm.x * width), int(lm.y * height) keypoints[name] = (x, y) # Draw a circle + label for debug cv2.circle(image, (x, y), 5, (0, 255, 0), -1) cv2.putText(image, name, (x + 5, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1) return image, keypoints # Gradio interface iface = gr.Interface( fn=detect_pose, inputs=gr.Image(type="numpy", label="Upload Full-Body Image"), outputs=[ gr.Image(type="numpy", label="Pose Visualization"), gr.JSON(label="Extracted Keypoints") ], title="Virtual Try-On - Pose Detection", description="Detects body keypoints using MediaPipe Pose and visualizes them. Shoulders and hips are labeled." ) if __name__ == "__main__": iface.launch()