import gradio as gr import cv2 import numpy as np import mediapipe as mp import os example_path = os.path.join(os.path.dirname(__file__), 'example') garm_list = os.listdir(os.path.join(example_path, "cloth")) garm_list_path = [os.path.join(example_path, "cloth", garm) for garm in garm_list] human_list = os.listdir(os.path.join(example_path, "human")) human_list_path = [os.path.join(example_path, "human", human) for human in human_list] # Initialize MediaPipe Pose mp_pose = mp.solutions.pose pose = mp_pose.Pose(static_image_mode=True) mp_drawing = mp.solutions.drawing_utils mp_pose_landmark = mp_pose.PoseLandmark def detect_pose(image): # Convert to RGB image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Run pose detection result = pose.process(image_rgb) keypoints = {} if result.pose_landmarks: # Draw landmarks on image mp_drawing.draw_landmarks(image, result.pose_landmarks, mp_pose.POSE_CONNECTIONS) # Get image dimensions height, width, _ = image.shape # Extract specific landmarks landmark_indices = { 'left_shoulder': mp_pose_landmark.LEFT_SHOULDER, 'right_shoulder': mp_pose_landmark.RIGHT_SHOULDER, 'left_hip': mp_pose_landmark.LEFT_HIP, 'right_hip': mp_pose_landmark.RIGHT_HIP } for name, index in landmark_indices.items(): lm = result.pose_landmarks.landmark[index] x, y = int(lm.x * width), int(lm.y * height) keypoints[name] = (x, y) # Draw a circle + label for debug cv2.circle(image, (x, y), 5, (0, 255, 0), -1) cv2.putText(image, name, (x + 5, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1) return image def process_image(human_img): # Convert PIL image to NumPy array human_img = np.array(human_img) processed_image = detect_pose(human_img) return processed_image image_blocks = gr.Blocks().queue() with image_blocks as demo: gr.HTML("

Virtual Try-On

") gr.HTML("

Upload an image of a person and an image of a garment ✨

") with gr.Row(): with gr.Column(): human_img = gr.Image(type="pil", label='Human', interactive=True) example = gr.Examples( inputs=human_img, examples_per_page=10, examples=human_list_path ) with gr.Column(): garm_img = gr.Image(label="Garment", type="pil", interactive=True) example = gr.Examples( inputs=garm_img, examples_per_page=8, examples=garm_list_path) with gr.Column(): image_out = gr.Image(label="Processed image", type="pil") with gr.Row(): try_button = gr.Button(value="Try-on", variant='primary') # Linking the button to the processing function try_button.click(fn=process_image, inputs=human_img, outputs=image_out) image_blocks.launch()