Spaces:
Running
Running
ptmsc
commited on
Commit
·
0f7f5eb
1
Parent(s):
99959d8
call api to handle tryon
Browse files- app.py +81 -12
- requirements.txt +2 -1
app.py
CHANGED
@@ -1,8 +1,11 @@
|
|
1 |
-
import
|
|
|
2 |
import cv2
|
3 |
-
import
|
4 |
import mediapipe as mp
|
5 |
-
import
|
|
|
|
|
6 |
|
7 |
example_path = os.path.join(os.path.dirname(__file__), 'example')
|
8 |
|
@@ -55,12 +58,78 @@ def detect_pose(image):
|
|
55 |
return image
|
56 |
|
57 |
|
58 |
-
def
|
59 |
-
|
60 |
-
|
|
|
61 |
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
|
66 |
image_blocks = gr.Blocks().queue()
|
@@ -69,7 +138,7 @@ with image_blocks as demo:
|
|
69 |
gr.HTML("<center><p>Upload an image of a person and an image of a garment ✨</p></center>")
|
70 |
with gr.Row():
|
71 |
with gr.Column():
|
72 |
-
human_img = gr.Image(type="
|
73 |
example = gr.Examples(
|
74 |
inputs=human_img,
|
75 |
examples_per_page=10,
|
@@ -77,7 +146,7 @@ with image_blocks as demo:
|
|
77 |
)
|
78 |
|
79 |
with gr.Column():
|
80 |
-
garm_img = gr.Image(label="Garment", type="
|
81 |
example = gr.Examples(
|
82 |
inputs=garm_img,
|
83 |
examples_per_page=8,
|
@@ -89,6 +158,6 @@ with image_blocks as demo:
|
|
89 |
try_button = gr.Button(value="Try-on", variant='primary')
|
90 |
|
91 |
# Linking the button to the processing function
|
92 |
-
try_button.click(fn=process_image, inputs=human_img, outputs=image_out)
|
93 |
|
94 |
-
image_blocks.launch()
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
import cv2
|
4 |
+
import gradio as gr
|
5 |
import mediapipe as mp
|
6 |
+
import numpy as np
|
7 |
+
from PIL import Image
|
8 |
+
from gradio_client import Client, handle_file
|
9 |
|
10 |
example_path = os.path.join(os.path.dirname(__file__), 'example')
|
11 |
|
|
|
58 |
return image
|
59 |
|
60 |
|
61 |
+
def align_clothing(body_img, clothing_img):
|
62 |
+
image_rgb = cv2.cvtColor(body_img, cv2.COLOR_BGR2RGB)
|
63 |
+
result = pose.process(image_rgb)
|
64 |
+
output = body_img.copy()
|
65 |
|
66 |
+
if result.pose_landmarks:
|
67 |
+
h, w, _ = output.shape
|
68 |
+
|
69 |
+
# Extract key points
|
70 |
+
def get_point(landmark_id):
|
71 |
+
lm = result.pose_landmarks.landmark[landmark_id]
|
72 |
+
return int(lm.x * w), int(lm.y * h)
|
73 |
+
|
74 |
+
left_shoulder = get_point(mp_pose_landmark.LEFT_SHOULDER)
|
75 |
+
right_shoulder = get_point(mp_pose_landmark.RIGHT_SHOULDER)
|
76 |
+
left_hip = get_point(mp_pose_landmark.LEFT_HIP)
|
77 |
+
right_hip = get_point(mp_pose_landmark.RIGHT_HIP)
|
78 |
+
|
79 |
+
# Destination box (torso region)
|
80 |
+
dst_pts = np.array([
|
81 |
+
left_shoulder,
|
82 |
+
right_shoulder,
|
83 |
+
right_hip,
|
84 |
+
left_hip
|
85 |
+
], dtype=np.float32)
|
86 |
+
|
87 |
+
# Source box (clothing image corners)
|
88 |
+
src_h, src_w = clothing_img.shape[:2]
|
89 |
+
src_pts = np.array([
|
90 |
+
[0, 0],
|
91 |
+
[src_w, 0],
|
92 |
+
[src_w, src_h],
|
93 |
+
[0, src_h]
|
94 |
+
], dtype=np.float32)
|
95 |
+
|
96 |
+
# Compute perspective transform and warp
|
97 |
+
matrix = cv2.getPerspectiveTransform(src_pts, dst_pts)
|
98 |
+
warped_clothing = cv2.warpPerspective(clothing_img, matrix, (w, h), borderMode=cv2.BORDER_TRANSPARENT)
|
99 |
+
|
100 |
+
# Handle transparency
|
101 |
+
if clothing_img.shape[2] == 4:
|
102 |
+
alpha = warped_clothing[:, :, 3] / 255.0
|
103 |
+
for c in range(3):
|
104 |
+
output[:, :, c] = (1 - alpha) * output[:, :, c] + alpha * warped_clothing[:, :, c]
|
105 |
+
else:
|
106 |
+
output = cv2.addWeighted(output, 0.8, warped_clothing, 0.5, 0)
|
107 |
+
|
108 |
+
return output
|
109 |
+
|
110 |
+
|
111 |
+
def process_image(human_img_path, garm_img_path):
|
112 |
+
client = Client("franciszzj/Leffa")
|
113 |
+
|
114 |
+
result = client.predict(
|
115 |
+
src_image_path=handle_file(human_img_path),
|
116 |
+
ref_image_path=handle_file(garm_img_path),
|
117 |
+
ref_acceleration=False,
|
118 |
+
step=30,
|
119 |
+
scale=2.5,
|
120 |
+
seed=42,
|
121 |
+
vt_model_type="viton_hd",
|
122 |
+
vt_garment_type="upper_body",
|
123 |
+
vt_repaint=False,
|
124 |
+
api_name="/leffa_predict_vt"
|
125 |
+
)
|
126 |
+
|
127 |
+
print(result)
|
128 |
+
generated_image_path = result[0]
|
129 |
+
print("generated_image_path" + generated_image_path)
|
130 |
+
generated_image = Image.open(generated_image_path)
|
131 |
+
|
132 |
+
return generated_image
|
133 |
|
134 |
|
135 |
image_blocks = gr.Blocks().queue()
|
|
|
138 |
gr.HTML("<center><p>Upload an image of a person and an image of a garment ✨</p></center>")
|
139 |
with gr.Row():
|
140 |
with gr.Column():
|
141 |
+
human_img = gr.Image(type="filepath", label='Human', interactive=True)
|
142 |
example = gr.Examples(
|
143 |
inputs=human_img,
|
144 |
examples_per_page=10,
|
|
|
146 |
)
|
147 |
|
148 |
with gr.Column():
|
149 |
+
garm_img = gr.Image(label="Garment", type="filepath", interactive=True)
|
150 |
example = gr.Examples(
|
151 |
inputs=garm_img,
|
152 |
examples_per_page=8,
|
|
|
158 |
try_button = gr.Button(value="Try-on", variant='primary')
|
159 |
|
160 |
# Linking the button to the processing function
|
161 |
+
try_button.click(fn=process_image, inputs=[human_img, garm_img], outputs=image_out)
|
162 |
|
163 |
+
image_blocks.launch(show_error=True)
|
requirements.txt
CHANGED
@@ -3,4 +3,5 @@ numpy==1.26.4
|
|
3 |
opencv-contrib-python==4.11.0.86
|
4 |
opencv-python==4.11.0.86
|
5 |
gradio==5.23.3
|
6 |
-
gradio_client==1.8.0
|
|
|
|
3 |
opencv-contrib-python==4.11.0.86
|
4 |
opencv-python==4.11.0.86
|
5 |
gradio==5.23.3
|
6 |
+
gradio_client==1.8.0
|
7 |
+
|