Spaces:
Runtime error
Runtime error
Commit
·
284dbfe
1
Parent(s):
6e89a88
testing
Browse files
app.py
CHANGED
|
@@ -1,120 +0,0 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
from PIL import Image
|
| 3 |
-
import pytesseract
|
| 4 |
-
import json
|
| 5 |
-
|
| 6 |
-
import google.generativeai as genai
|
| 7 |
-
google_api = 'AIzaSyAMlYqwvuQgekl8nlqc56XTqJVBufszrBU'
|
| 8 |
-
genai.configure(api_key=google_api)
|
| 9 |
-
from pathlib import Path
|
| 10 |
-
# from IPython.display import Markdown
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
from PIL import Image
|
| 16 |
-
import io
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
# Model Configuration
|
| 22 |
-
MODEL_CONFIG = {
|
| 23 |
-
"temperature": 0.2,
|
| 24 |
-
"top_p": 1,
|
| 25 |
-
"top_k": 32,
|
| 26 |
-
"max_output_tokens": 4096,
|
| 27 |
-
}
|
| 28 |
-
|
| 29 |
-
## Safety Settings of Model
|
| 30 |
-
safety_settings = [
|
| 31 |
-
{
|
| 32 |
-
"category": "HARM_CATEGORY_HARASSMENT",
|
| 33 |
-
"threshold": "BLOCK_MEDIUM_AND_ABOVE"
|
| 34 |
-
},
|
| 35 |
-
{
|
| 36 |
-
"category": "HARM_CATEGORY_HATE_SPEECH",
|
| 37 |
-
"threshold": "BLOCK_MEDIUM_AND_ABOVE"
|
| 38 |
-
},
|
| 39 |
-
{
|
| 40 |
-
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
|
| 41 |
-
"threshold": "BLOCK_MEDIUM_AND_ABOVE"
|
| 42 |
-
},
|
| 43 |
-
{
|
| 44 |
-
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
|
| 45 |
-
"threshold": "BLOCK_MEDIUM_AND_ABOVE"
|
| 46 |
-
}
|
| 47 |
-
]
|
| 48 |
-
|
| 49 |
-
model = genai.GenerativeModel(model_name='gemini-2.5-flash',
|
| 50 |
-
generation_config=MODEL_CONFIG,
|
| 51 |
-
safety_settings=safety_settings)
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
def gemini_output(image_path,
|
| 55 |
-
system_prompt,
|
| 56 |
-
user_prompt):
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
input_prompt = [system_prompt, image_path, user_prompt]
|
| 60 |
-
response = model.generate_content(input_prompt)
|
| 61 |
-
|
| 62 |
-
return response.text
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
custom_css = """
|
| 68 |
-
.image_preview {
|
| 69 |
-
max-height: 700px; overflow-y: auto !important;
|
| 70 |
-
}
|
| 71 |
-
|
| 72 |
-
.big-font textarea {
|
| 73 |
-
font-size: 20px !important;
|
| 74 |
-
}
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
"""
|
| 78 |
-
|
| 79 |
-
def extract_text(image_path):
|
| 80 |
-
|
| 81 |
-
system_prompt = """
|
| 82 |
-
You are a specialist in comprehending receipts.
|
| 83 |
-
Input images in the form of receipts will be provided to you,
|
| 84 |
-
and your task is to respond to questions based on the content of the input image.
|
| 85 |
-
"""
|
| 86 |
-
|
| 87 |
-
user_prompt = "Convert Invoice data into json format with appropriate json tags as required for the data in image "
|
| 88 |
-
output = gemini_output(image_path, system_prompt, user_prompt)
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
output = output.replace("```json", "")
|
| 93 |
-
output = output.replace("```", "")
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
print(f">>>>>>> {output}")
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
return output
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
# Create the Gradio interface
|
| 105 |
-
iface = gr.Interface(
|
| 106 |
-
fn=extract_text,
|
| 107 |
-
inputs=gr.Image(type="pil", elem_classes=["image_preview"]), # Accept PIL images directly
|
| 108 |
-
outputs=gr.Textbox(lines=20,
|
| 109 |
-
max_lines=10,
|
| 110 |
-
label='Extracted Text',
|
| 111 |
-
elem_classes=["big-font"]
|
| 112 |
-
),
|
| 113 |
-
title="Text Extraction",
|
| 114 |
-
description="Upload an image to extract text",
|
| 115 |
-
allow_flagging='never',
|
| 116 |
-
css=custom_css,
|
| 117 |
-
)
|
| 118 |
-
|
| 119 |
-
# Launch the app
|
| 120 |
-
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
gardio.py
ADDED
|
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import pytesseract
|
| 4 |
+
import json
|
| 5 |
+
|
| 6 |
+
import google.generativeai as genai
|
| 7 |
+
google_api = 'AIzaSyAMlYqwvuQgekl8nlqc56XTqJVBufszrBU'
|
| 8 |
+
genai.configure(api_key=google_api)
|
| 9 |
+
from pathlib import Path
|
| 10 |
+
# from IPython.display import Markdown
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
from PIL import Image
|
| 16 |
+
import io
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
# Model Configuration
|
| 22 |
+
MODEL_CONFIG = {
|
| 23 |
+
"temperature": 0.2,
|
| 24 |
+
"top_p": 1,
|
| 25 |
+
"top_k": 32,
|
| 26 |
+
"max_output_tokens": 4096,
|
| 27 |
+
}
|
| 28 |
+
|
| 29 |
+
## Safety Settings of Model
|
| 30 |
+
safety_settings = [
|
| 31 |
+
{
|
| 32 |
+
"category": "HARM_CATEGORY_HARASSMENT",
|
| 33 |
+
"threshold": "BLOCK_MEDIUM_AND_ABOVE"
|
| 34 |
+
},
|
| 35 |
+
{
|
| 36 |
+
"category": "HARM_CATEGORY_HATE_SPEECH",
|
| 37 |
+
"threshold": "BLOCK_MEDIUM_AND_ABOVE"
|
| 38 |
+
},
|
| 39 |
+
{
|
| 40 |
+
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
|
| 41 |
+
"threshold": "BLOCK_MEDIUM_AND_ABOVE"
|
| 42 |
+
},
|
| 43 |
+
{
|
| 44 |
+
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
|
| 45 |
+
"threshold": "BLOCK_MEDIUM_AND_ABOVE"
|
| 46 |
+
}
|
| 47 |
+
]
|
| 48 |
+
|
| 49 |
+
model = genai.GenerativeModel(model_name='gemini-2.5-flash',
|
| 50 |
+
generation_config=MODEL_CONFIG,
|
| 51 |
+
safety_settings=safety_settings)
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def gemini_output(image_path,
|
| 55 |
+
system_prompt,
|
| 56 |
+
user_prompt):
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
input_prompt = [system_prompt, image_path, user_prompt]
|
| 60 |
+
response = model.generate_content(input_prompt)
|
| 61 |
+
|
| 62 |
+
return response.text
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
custom_css = """
|
| 68 |
+
.image_preview {
|
| 69 |
+
max-height: 700px; overflow-y: auto !important;
|
| 70 |
+
}
|
| 71 |
+
|
| 72 |
+
.big-font textarea {
|
| 73 |
+
font-size: 20px !important;
|
| 74 |
+
}
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
"""
|
| 78 |
+
|
| 79 |
+
def extract_text(image_path):
|
| 80 |
+
|
| 81 |
+
system_prompt = """
|
| 82 |
+
You are a specialist in comprehending receipts.
|
| 83 |
+
Input images in the form of receipts will be provided to you,
|
| 84 |
+
and your task is to respond to questions based on the content of the input image.
|
| 85 |
+
"""
|
| 86 |
+
|
| 87 |
+
user_prompt = "Convert Invoice data into json format with appropriate json tags as required for the data in image "
|
| 88 |
+
output = gemini_output(image_path, system_prompt, user_prompt)
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
output = output.replace("```json", "")
|
| 93 |
+
output = output.replace("```", "")
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
print(f">>>>>>> {output}")
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
return output
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
# Create the Gradio interface
|
| 105 |
+
iface = gr.Interface(
|
| 106 |
+
fn=extract_text,
|
| 107 |
+
inputs=gr.Image(type="pil", elem_classes=["image_preview"]), # Accept PIL images directly
|
| 108 |
+
outputs=gr.Textbox(lines=20,
|
| 109 |
+
max_lines=10,
|
| 110 |
+
label='Extracted Text',
|
| 111 |
+
elem_classes=["big-font"]
|
| 112 |
+
),
|
| 113 |
+
title="Text Extraction",
|
| 114 |
+
description="Upload an image to extract text",
|
| 115 |
+
allow_flagging='never',
|
| 116 |
+
css=custom_css,
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
# Launch the app
|
| 120 |
+
iface.launch()
|