Create data_processor.py
Browse files- data_processor.py +137 -0
data_processor.py
ADDED
|
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import os
|
| 3 |
+
import re
|
| 4 |
+
from huggingface_hub import InferenceClient
|
| 5 |
+
|
| 6 |
+
class DataProcessor:
|
| 7 |
+
INTERVENTION_COLUMN = 'Did the intervention happen today?'
|
| 8 |
+
ENGAGED_STR = 'Engaged (Respect, Responsibility, Effort)'
|
| 9 |
+
PARTIALLY_ENGAGED_STR = 'Partially Engaged (about 50%)'
|
| 10 |
+
NOT_ENGAGED_STR = 'Not Engaged (less than 50%)'
|
| 11 |
+
|
| 12 |
+
def __init__(self):
|
| 13 |
+
self.hf_api_key = os.getenv('HF_API_KEY')
|
| 14 |
+
if not self.hf_api_key:
|
| 15 |
+
raise ValueError("HF_API_KEY not set in environment variables")
|
| 16 |
+
self.client = InferenceClient(api_key=self.hf_api_key)
|
| 17 |
+
|
| 18 |
+
def read_excel(self, uploaded_file):
|
| 19 |
+
return pd.read_excel(uploaded_file)
|
| 20 |
+
|
| 21 |
+
def format_session_data(self, df):
|
| 22 |
+
df['Date of Session'] = self.safe_convert_to_datetime(df['Date of Session'], '%m/%d/%Y')
|
| 23 |
+
df['Timestamp'] = self.safe_convert_to_datetime(df['Timestamp'], '%I:%M %p')
|
| 24 |
+
df['Session Start Time'] = self.safe_convert_to_time(df['Session Start Time'], '%I:%M %p')
|
| 25 |
+
df['Session End Time'] = self.safe_convert_to_time(df['Session End Time'], '%I:%M %p')
|
| 26 |
+
df = df[['Date of Session', 'Timestamp'] + [col for col in df.columns if col not in ['Date of Session', 'Timestamp']]]
|
| 27 |
+
return df
|
| 28 |
+
|
| 29 |
+
def safe_convert_to_time(self, series, format_str='%I:%M %p'):
|
| 30 |
+
try:
|
| 31 |
+
converted = pd.to_datetime(series, format='%H:%M:%S', errors='coerce')
|
| 32 |
+
if format_str:
|
| 33 |
+
return converted.dt.strftime(format_str)
|
| 34 |
+
return converted
|
| 35 |
+
except Exception as e:
|
| 36 |
+
print(f"Error converting series to time: {e}")
|
| 37 |
+
return series
|
| 38 |
+
|
| 39 |
+
def safe_convert_to_datetime(self, series, format_str=None):
|
| 40 |
+
try:
|
| 41 |
+
converted = pd.to_datetime(series, errors='coerce')
|
| 42 |
+
if format_str:
|
| 43 |
+
return converted.dt.strftime(format_str)
|
| 44 |
+
return converted
|
| 45 |
+
except Exception as e:
|
| 46 |
+
print(f"Error converting series to datetime: {e}")
|
| 47 |
+
return series
|
| 48 |
+
|
| 49 |
+
def replace_student_names_with_initials(self, df):
|
| 50 |
+
updated_columns = []
|
| 51 |
+
for col in df.columns:
|
| 52 |
+
if col.startswith('Student Attendance'):
|
| 53 |
+
match = re.match(r'Student Attendance \[(.+?)\]', col)
|
| 54 |
+
if match:
|
| 55 |
+
name = match.group(1)
|
| 56 |
+
name_parts = name.split()
|
| 57 |
+
if len(name_parts) == 1:
|
| 58 |
+
initials = name_parts[0][0]
|
| 59 |
+
else:
|
| 60 |
+
initials = ''.join([part[0] for part in name_parts])
|
| 61 |
+
updated_columns.append(f'Student Attendance [{initials}]')
|
| 62 |
+
else:
|
| 63 |
+
updated_columns.append(col)
|
| 64 |
+
else:
|
| 65 |
+
updated_columns.append(col)
|
| 66 |
+
df.columns = updated_columns
|
| 67 |
+
return df
|
| 68 |
+
|
| 69 |
+
def compute_intervention_statistics(self, df):
|
| 70 |
+
total_days = len(df)
|
| 71 |
+
sessions_held = df[self.INTERVENTION_COLUMN].str.strip().str.lower().eq('yes').sum()
|
| 72 |
+
sessions_not_held = df[self.INTERVENTION_COLUMN].str.strip().str.lower().eq('no').sum()
|
| 73 |
+
intervention_frequency = (sessions_held / total_days) * 100 if total_days > 0 else 0
|
| 74 |
+
intervention_frequency = round(intervention_frequency, 0)
|
| 75 |
+
|
| 76 |
+
stats = {
|
| 77 |
+
'Intervention Frequency (%)': [intervention_frequency],
|
| 78 |
+
'Intervention Sessions Held': [sessions_held],
|
| 79 |
+
'Intervention Sessions Not Held': [sessions_not_held],
|
| 80 |
+
'Total Number of Days Available': [total_days]
|
| 81 |
+
}
|
| 82 |
+
return pd.DataFrame(stats)
|
| 83 |
+
|
| 84 |
+
def compute_student_metrics(self, df):
|
| 85 |
+
intervention_df = df[df[self.INTERVENTION_COLUMN].str.strip().str.lower() == 'yes']
|
| 86 |
+
intervention_sessions_held = len(intervention_df)
|
| 87 |
+
student_columns = [col for col in df.columns if col.startswith('Student Attendance')]
|
| 88 |
+
|
| 89 |
+
student_metrics = {}
|
| 90 |
+
for col in student_columns:
|
| 91 |
+
student_name = col.replace('Student Attendance [', '').replace(']', '').strip()
|
| 92 |
+
student_data = intervention_df[[col]].copy()
|
| 93 |
+
student_data[col] = student_data[col].fillna('Absent')
|
| 94 |
+
|
| 95 |
+
attendance_values = student_data[col].apply(lambda x: 1 if x in [
|
| 96 |
+
self.ENGAGED_STR,
|
| 97 |
+
self.PARTIALLY_ENGAGED_STR,
|
| 98 |
+
self.NOT_ENGAGED_STR
|
| 99 |
+
] else 0)
|
| 100 |
+
|
| 101 |
+
sessions_attended = attendance_values.sum()
|
| 102 |
+
attendance_pct = (sessions_attended / intervention_sessions_held) * 100 if intervention_sessions_held > 0 else 0
|
| 103 |
+
attendance_pct = round(attendance_pct)
|
| 104 |
+
|
| 105 |
+
engagement_counts = {
|
| 106 |
+
'Engaged': 0,
|
| 107 |
+
'Partially Engaged': 0,
|
| 108 |
+
'Not Engaged': 0,
|
| 109 |
+
'Absent': 0
|
| 110 |
+
}
|
| 111 |
+
|
| 112 |
+
for x in student_data[col]:
|
| 113 |
+
if x == self.ENGAGED_STR:
|
| 114 |
+
engagement_counts['Engaged'] += 1
|
| 115 |
+
elif x == self.PARTIALLY_ENGAGED_STR:
|
| 116 |
+
engagement_counts['Partially Engaged'] += 1
|
| 117 |
+
elif x == self.NOT_ENGAGED_STR:
|
| 118 |
+
engagement_counts['Not Engaged'] += 1
|
| 119 |
+
else:
|
| 120 |
+
engagement_counts['Absent'] += 1
|
| 121 |
+
|
| 122 |
+
total_sessions = sum(engagement_counts.values())
|
| 123 |
+
engagement_pct = (engagement_counts['Engaged'] / total_sessions * 100) if total_sessions > 0 else 0
|
| 124 |
+
engagement_pct = round(engagement_pct)
|
| 125 |
+
|
| 126 |
+
student_metrics[student_name] = {
|
| 127 |
+
'Attendance (%)': attendance_pct,
|
| 128 |
+
'Attendance #': sessions_attended,
|
| 129 |
+
'Engagement (%)': engagement_pct
|
| 130 |
+
}
|
| 131 |
+
|
| 132 |
+
return pd.DataFrame.from_dict(student_metrics, orient='index').reset_index().rename(columns={'index': 'Student'})
|
| 133 |
+
|
| 134 |
+
def compute_average_metrics(self, student_metrics_df):
|
| 135 |
+
attendance_avg_stats = student_metrics_df['Attendance (%)'].mean()
|
| 136 |
+
engagement_avg_stats = student_metrics_df['Engagement (%)'].mean()
|
| 137 |
+
return round(attendance_avg_stats), round(engagement_avg_stats)
|