ProfessorLeVesseur
commited on
Commit
•
7c26327
1
Parent(s):
78f318b
Update data_processor.py
Browse files- data_processor.py +117 -25
data_processor.py
CHANGED
@@ -117,9 +117,86 @@ class DataProcessor:
|
|
117 |
else:
|
118 |
return 'Unknown'
|
119 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
def compute_student_metrics(self, df):
|
121 |
intervention_column = self.get_intervention_column(df)
|
122 |
-
intervention_df = df[df[intervention_column].str.strip().str.lower().isin(self.YES_RESPONSES)]
|
123 |
intervention_sessions_held = len(intervention_df)
|
124 |
student_columns = [col for col in df.columns if col.startswith('Student Attendance')]
|
125 |
|
@@ -129,55 +206,70 @@ class DataProcessor:
|
|
129 |
student_data = intervention_df[[col]].copy()
|
130 |
student_data[col] = student_data[col].fillna('Absent')
|
131 |
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
|
|
|
|
137 |
|
138 |
sessions_attended = attendance_values.sum()
|
139 |
attendance_pct = (sessions_attended / intervention_sessions_held * 100) if intervention_sessions_held > 0 else 0
|
140 |
attendance_pct = round(attendance_pct)
|
141 |
|
|
|
142 |
engagement_counts = {
|
143 |
self.ENGAGED_STR: 0,
|
144 |
self.PARTIALLY_ENGAGED_STR: 0,
|
145 |
-
self.NOT_ENGAGED_STR: 0
|
146 |
-
'Absent': 0
|
147 |
}
|
148 |
|
149 |
-
|
150 |
-
|
151 |
-
if
|
152 |
-
engagement_counts[
|
153 |
-
|
154 |
-
engagement_counts['Absent'] += 1 # Count as Absent if not engaged
|
155 |
|
156 |
-
|
157 |
-
|
158 |
-
engaged_pct = (
|
|
|
|
|
|
|
159 |
engaged_pct = round(engaged_pct)
|
160 |
|
161 |
-
partially_engaged_pct = (
|
|
|
|
|
|
|
162 |
partially_engaged_pct = round(partially_engaged_pct)
|
163 |
|
164 |
-
not_engaged_pct = (
|
|
|
|
|
|
|
165 |
not_engaged_pct = round(not_engaged_pct)
|
166 |
|
167 |
-
absent_pct = (engagement_counts['Absent'] / total_sessions * 100) if total_sessions > 0 else 0
|
168 |
-
absent_pct = round(absent_pct)
|
169 |
-
|
170 |
# Engagement percentage is based on Engaged and Partially Engaged sessions
|
171 |
-
engagement_pct = (
|
|
|
|
|
|
|
172 |
engagement_pct = round(engagement_pct)
|
173 |
|
|
|
|
|
|
|
|
|
|
|
174 |
# Determine if the student attended ≥ 90% of sessions
|
175 |
attended_90 = "Yes" if attendance_pct >= 90 else "No"
|
176 |
|
177 |
# Determine if the student was engaged ≥ 80% of the time
|
178 |
engaged_80 = "Yes" if engagement_pct >= 80 else "No"
|
179 |
|
180 |
-
# Store metrics
|
181 |
student_metrics[student_name] = {
|
182 |
'Attended ≥ 90%': attended_90,
|
183 |
'Engagement ≥ 80%': engaged_80,
|
@@ -193,7 +285,7 @@ class DataProcessor:
|
|
193 |
student_metrics_df = pd.DataFrame.from_dict(student_metrics, orient='index').reset_index()
|
194 |
student_metrics_df.rename(columns={'index': 'Student'}, inplace=True)
|
195 |
return student_metrics_df
|
196 |
-
|
197 |
def compute_average_metrics(self, student_metrics_df):
|
198 |
# Calculate the attendance and engagement average percentages across students
|
199 |
attendance_avg_stats = student_metrics_df['Attendance (%)'].mean() # Average attendance percentage
|
|
|
117 |
else:
|
118 |
return 'Unknown'
|
119 |
|
120 |
+
# def compute_student_metrics(self, df):
|
121 |
+
# intervention_column = self.get_intervention_column(df)
|
122 |
+
# intervention_df = df[df[intervention_column].str.strip().str.lower().isin(self.YES_RESPONSES)] # Modified line
|
123 |
+
# intervention_sessions_held = len(intervention_df)
|
124 |
+
# student_columns = [col for col in df.columns if col.startswith('Student Attendance')]
|
125 |
+
|
126 |
+
# student_metrics = {}
|
127 |
+
# for col in student_columns:
|
128 |
+
# student_name = col.replace('Student Attendance [', '').replace(']', '').strip()
|
129 |
+
# student_data = intervention_df[[col]].copy()
|
130 |
+
# student_data[col] = student_data[col].fillna('Absent')
|
131 |
+
|
132 |
+
# attendance_values = student_data[col].apply(lambda x: 1 if self.classify_engagement(x) in [
|
133 |
+
# self.ENGAGED_STR,
|
134 |
+
# self.PARTIALLY_ENGAGED_STR,
|
135 |
+
# self.NOT_ENGAGED_STR
|
136 |
+
# ] else 0)
|
137 |
+
|
138 |
+
# sessions_attended = attendance_values.sum()
|
139 |
+
# attendance_pct = (sessions_attended / intervention_sessions_held * 100) if intervention_sessions_held > 0 else 0
|
140 |
+
# attendance_pct = round(attendance_pct)
|
141 |
+
|
142 |
+
# engagement_counts = {
|
143 |
+
# self.ENGAGED_STR: 0,
|
144 |
+
# self.PARTIALLY_ENGAGED_STR: 0,
|
145 |
+
# self.NOT_ENGAGED_STR: 0,
|
146 |
+
# 'Absent': 0
|
147 |
+
# }
|
148 |
+
|
149 |
+
# for x in student_data[col]:
|
150 |
+
# classified_engagement = self.classify_engagement(x)
|
151 |
+
# if classified_engagement in engagement_counts:
|
152 |
+
# engagement_counts[classified_engagement] += 1
|
153 |
+
# else:
|
154 |
+
# engagement_counts['Absent'] += 1 # Count as Absent if not engaged
|
155 |
+
|
156 |
+
# total_sessions = sum(engagement_counts.values())
|
157 |
+
|
158 |
+
# engaged_pct = (engagement_counts[self.ENGAGED_STR] / total_sessions * 100) if total_sessions > 0 else 0
|
159 |
+
# engaged_pct = round(engaged_pct)
|
160 |
+
|
161 |
+
# partially_engaged_pct = (engagement_counts[self.PARTIALLY_ENGAGED_STR] / total_sessions * 100) if total_sessions > 0 else 0
|
162 |
+
# partially_engaged_pct = round(partially_engaged_pct)
|
163 |
+
|
164 |
+
# not_engaged_pct = (engagement_counts[self.NOT_ENGAGED_STR] / total_sessions * 100) if total_sessions > 0 else 0
|
165 |
+
# not_engaged_pct = round(not_engaged_pct)
|
166 |
+
|
167 |
+
# absent_pct = (engagement_counts['Absent'] / total_sessions * 100) if total_sessions > 0 else 0
|
168 |
+
# absent_pct = round(absent_pct)
|
169 |
+
|
170 |
+
# # Engagement percentage is based on Engaged and Partially Engaged sessions
|
171 |
+
# engagement_pct = ((engagement_counts[self.ENGAGED_STR] + engagement_counts[self.PARTIALLY_ENGAGED_STR]) / total_sessions * 100) if total_sessions > 0 else 0
|
172 |
+
# engagement_pct = round(engagement_pct)
|
173 |
+
|
174 |
+
# # Determine if the student attended ≥ 90% of sessions
|
175 |
+
# attended_90 = "Yes" if attendance_pct >= 90 else "No"
|
176 |
+
|
177 |
+
# # Determine if the student was engaged ≥ 80% of the time
|
178 |
+
# engaged_80 = "Yes" if engagement_pct >= 80 else "No"
|
179 |
+
|
180 |
+
# # Store metrics in the required order
|
181 |
+
# student_metrics[student_name] = {
|
182 |
+
# 'Attended ≥ 90%': attended_90,
|
183 |
+
# 'Engagement ≥ 80%': engaged_80,
|
184 |
+
# 'Attendance (%)': attendance_pct,
|
185 |
+
# 'Engagement (%)': engagement_pct,
|
186 |
+
# f'{self.ENGAGED_STR} (%)': engaged_pct,
|
187 |
+
# f'{self.PARTIALLY_ENGAGED_STR} (%)': partially_engaged_pct,
|
188 |
+
# f'{self.NOT_ENGAGED_STR} (%)': not_engaged_pct,
|
189 |
+
# 'Absent (%)': absent_pct
|
190 |
+
# }
|
191 |
+
|
192 |
+
# # Create a DataFrame from student_metrics
|
193 |
+
# student_metrics_df = pd.DataFrame.from_dict(student_metrics, orient='index').reset_index()
|
194 |
+
# student_metrics_df.rename(columns={'index': 'Student'}, inplace=True)
|
195 |
+
# return student_metrics_df
|
196 |
+
|
197 |
def compute_student_metrics(self, df):
|
198 |
intervention_column = self.get_intervention_column(df)
|
199 |
+
intervention_df = df[df[intervention_column].str.strip().str.lower().isin(self.YES_RESPONSES)]
|
200 |
intervention_sessions_held = len(intervention_df)
|
201 |
student_columns = [col for col in df.columns if col.startswith('Student Attendance')]
|
202 |
|
|
|
206 |
student_data = intervention_df[[col]].copy()
|
207 |
student_data[col] = student_data[col].fillna('Absent')
|
208 |
|
209 |
+
# Classify each entry
|
210 |
+
student_data['Engagement'] = student_data[col].apply(self.classify_engagement)
|
211 |
+
|
212 |
+
# Calculate attendance
|
213 |
+
attendance_values = student_data['Engagement'].apply(
|
214 |
+
lambda x: 1 if x in [self.ENGAGED_STR, self.PARTIALLY_ENGAGED_STR, self.NOT_ENGAGED_STR] else 0
|
215 |
+
)
|
216 |
|
217 |
sessions_attended = attendance_values.sum()
|
218 |
attendance_pct = (sessions_attended / intervention_sessions_held * 100) if intervention_sessions_held > 0 else 0
|
219 |
attendance_pct = round(attendance_pct)
|
220 |
|
221 |
+
# Engagement counts (excluding 'Absent')
|
222 |
engagement_counts = {
|
223 |
self.ENGAGED_STR: 0,
|
224 |
self.PARTIALLY_ENGAGED_STR: 0,
|
225 |
+
self.NOT_ENGAGED_STR: 0
|
|
|
226 |
}
|
227 |
|
228 |
+
# Count the engagement types, excluding 'Absent'
|
229 |
+
for x in student_data['Engagement']:
|
230 |
+
if x in engagement_counts:
|
231 |
+
engagement_counts[x] += 1
|
232 |
+
# 'Absent' is not counted in engagement_counts
|
|
|
233 |
|
234 |
+
total_present_sessions = sum(engagement_counts.values())
|
235 |
+
|
236 |
+
engaged_pct = (
|
237 |
+
(engagement_counts[self.ENGAGED_STR] / total_present_sessions * 100)
|
238 |
+
if total_present_sessions > 0 else 0
|
239 |
+
)
|
240 |
engaged_pct = round(engaged_pct)
|
241 |
|
242 |
+
partially_engaged_pct = (
|
243 |
+
(engagement_counts[self.PARTIALLY_ENGAGED_STR] / total_present_sessions * 100)
|
244 |
+
if total_present_sessions > 0 else 0
|
245 |
+
)
|
246 |
partially_engaged_pct = round(partially_engaged_pct)
|
247 |
|
248 |
+
not_engaged_pct = (
|
249 |
+
(engagement_counts[self.NOT_ENGAGED_STR] / total_present_sessions * 100)
|
250 |
+
if total_present_sessions > 0 else 0
|
251 |
+
)
|
252 |
not_engaged_pct = round(not_engaged_pct)
|
253 |
|
|
|
|
|
|
|
254 |
# Engagement percentage is based on Engaged and Partially Engaged sessions
|
255 |
+
engagement_pct = (
|
256 |
+
((engagement_counts[self.ENGAGED_STR] + engagement_counts[self.PARTIALLY_ENGAGED_STR]) / total_present_sessions * 100)
|
257 |
+
if total_present_sessions > 0 else 0
|
258 |
+
)
|
259 |
engagement_pct = round(engagement_pct)
|
260 |
|
261 |
+
# Absent percentage (for reference, not used in engagement calculation)
|
262 |
+
absent_sessions = student_data['Engagement'].value_counts().get('Absent', 0)
|
263 |
+
absent_pct = (absent_sessions / intervention_sessions_held * 100) if intervention_sessions_held > 0 else 0
|
264 |
+
absent_pct = round(absent_pct)
|
265 |
+
|
266 |
# Determine if the student attended ≥ 90% of sessions
|
267 |
attended_90 = "Yes" if attendance_pct >= 90 else "No"
|
268 |
|
269 |
# Determine if the student was engaged ≥ 80% of the time
|
270 |
engaged_80 = "Yes" if engagement_pct >= 80 else "No"
|
271 |
|
272 |
+
# Store metrics
|
273 |
student_metrics[student_name] = {
|
274 |
'Attended ≥ 90%': attended_90,
|
275 |
'Engagement ≥ 80%': engaged_80,
|
|
|
285 |
student_metrics_df = pd.DataFrame.from_dict(student_metrics, orient='index').reset_index()
|
286 |
student_metrics_df.rename(columns={'index': 'Student'}, inplace=True)
|
287 |
return student_metrics_df
|
288 |
+
|
289 |
def compute_average_metrics(self, student_metrics_df):
|
290 |
# Calculate the attendance and engagement average percentages across students
|
291 |
attendance_avg_stats = student_metrics_df['Attendance (%)'].mean() # Average attendance percentage
|