|
import re |
|
import pandas as pd |
|
import os |
|
from huggingface_hub import InferenceClient |
|
|
|
class DataProcessor: |
|
INTERVENTION_COLUMN_OPTIONS = [ |
|
'Did the intervention happen today?', |
|
'Did the intervention take place today?' |
|
] |
|
YES_RESPONSES = ['yes', 'assessment day'] |
|
ENGAGED_STR = 'Engaged' |
|
PARTIALLY_ENGAGED_STR = 'Partially Engaged' |
|
NOT_ENGAGED_STR = 'Not Engaged' |
|
|
|
def __init__(self, student_metrics_df=None): |
|
self.hf_api_key = os.getenv('HF_API_KEY') |
|
if not self.hf_api_key: |
|
raise ValueError("HF_API_KEY not set in environment variables") |
|
self.client = InferenceClient(api_key=self.hf_api_key) |
|
self.student_metrics_df = student_metrics_df |
|
self.intervention_column = None |
|
|
|
def read_excel(self, uploaded_file): |
|
return pd.read_excel(uploaded_file) |
|
|
|
def format_session_data(self, df): |
|
date_column = next((col for col in df.columns if col in ["Date of Session", "Date"]), None) |
|
if date_column: |
|
df[date_column] = pd.to_datetime(df[date_column], errors='coerce').dt.date |
|
else: |
|
print("Warning: Neither 'Date of Session' nor 'Date' column found in the dataframe.") |
|
|
|
df['Timestamp'] = self.safe_convert_to_datetime(df['Timestamp'], '%I:%M %p') |
|
df['Session Start Time'] = self.safe_convert_to_time(df['Session Start Time'], '%I:%M %p') |
|
df['Session End Time'] = self.safe_convert_to_time(df['Session End Time'], '%I:%M %p') |
|
return df |
|
|
|
def safe_convert_to_time(self, series, format_str='%I:%M %p'): |
|
try: |
|
converted = pd.to_datetime(series, format='%H:%M:%S', errors='coerce') |
|
if format_str: |
|
return converted.dt.strftime(format_str) |
|
return converted |
|
except Exception as e: |
|
print(f"Error converting series to time: {e}") |
|
return series |
|
|
|
def safe_convert_to_datetime(self, series, format_str=None): |
|
try: |
|
converted = pd.to_datetime(series, errors='coerce') |
|
if format_str: |
|
return converted.dt.strftime(format_str) |
|
return converted |
|
except Exception as e: |
|
print(f"Error converting series to datetime: {e}") |
|
return series |
|
|
|
def replace_student_names_with_initials(self, df): |
|
updated_columns = [] |
|
for col in df.columns: |
|
if 'Student Attendance' in col: |
|
|
|
match = re.search(r'\[(.+?)\]$', col) |
|
if not match: |
|
|
|
match = re.search(r'\[(.+)$', col) |
|
if match: |
|
name = match.group(1).strip() |
|
|
|
name = name.rstrip(']') |
|
|
|
initials = ''.join([part[0] for part in name.strip().split()]) |
|
updated_col = f'Student Attendance [{initials}]' |
|
updated_columns.append(updated_col) |
|
else: |
|
|
|
updated_columns.append(col) |
|
else: |
|
updated_columns.append(col) |
|
df.columns = updated_columns |
|
return df |
|
|
|
|
|
def find_intervention_column(self, df): |
|
for column in self.INTERVENTION_COLUMN_OPTIONS: |
|
if column in df.columns: |
|
self.intervention_column = column |
|
return column |
|
raise ValueError("No intervention column found in the dataframe.") |
|
|
|
def get_intervention_column(self, df): |
|
if self.intervention_column is None: |
|
self.intervention_column = self.find_intervention_column(df) |
|
return self.intervention_column |
|
|
|
def compute_intervention_statistics(self, df): |
|
intervention_column = self.get_intervention_column(df) |
|
total_days = len(df) |
|
sessions_held = df[intervention_column].str.strip().str.lower().isin(self.YES_RESPONSES).sum() |
|
intervention_frequency = (sessions_held / total_days) * 100 if total_days > 0 else 0 |
|
return pd.DataFrame({ |
|
'Intervention Dosage (%)': [round(intervention_frequency, 0)], |
|
'Intervention Sessions Held': [sessions_held], |
|
'Intervention Sessions Not Held': [total_days - sessions_held], |
|
'Total Number of Days Available': [total_days] |
|
}) |
|
|
|
def classify_engagement(self, engagement_str): |
|
engagement_str = str(engagement_str).lower() |
|
if engagement_str.startswith(self.ENGAGED_STR.lower()): |
|
return self.ENGAGED_STR |
|
elif engagement_str.startswith(self.PARTIALLY_ENGAGED_STR.lower()): |
|
return self.PARTIALLY_ENGAGED_STR |
|
elif engagement_str.startswith(self.NOT_ENGAGED_STR.lower()): |
|
return self.NOT_ENGAGED_STR |
|
else: |
|
return 'Unknown' |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def compute_student_metrics(self, df): |
|
intervention_column = self.get_intervention_column(df) |
|
intervention_df = df[df[intervention_column].str.strip().str.lower().isin(self.YES_RESPONSES)] |
|
intervention_sessions_held = len(intervention_df) |
|
student_columns = [col for col in df.columns if col.startswith('Student Attendance')] |
|
|
|
student_metrics = {} |
|
for col in student_columns: |
|
student_name = col.replace('Student Attendance [', '').replace(']', '').strip() |
|
student_data = intervention_df[[col]].copy() |
|
student_data[col] = student_data[col].fillna('Absent') |
|
|
|
|
|
student_data['Engagement'] = student_data[col].apply(self.classify_engagement) |
|
|
|
|
|
attendance_values = student_data['Engagement'].apply( |
|
lambda x: 1 if x in [self.ENGAGED_STR, self.PARTIALLY_ENGAGED_STR, self.NOT_ENGAGED_STR] else 0 |
|
) |
|
|
|
sessions_attended = attendance_values.sum() |
|
attendance_pct = (sessions_attended / intervention_sessions_held * 100) if intervention_sessions_held > 0 else 0 |
|
attendance_pct = round(attendance_pct) |
|
|
|
|
|
engagement_counts = { |
|
self.ENGAGED_STR: 0, |
|
self.PARTIALLY_ENGAGED_STR: 0, |
|
self.NOT_ENGAGED_STR: 0 |
|
} |
|
|
|
|
|
for x in student_data['Engagement']: |
|
if x in engagement_counts: |
|
engagement_counts[x] += 1 |
|
|
|
|
|
total_present_sessions = sum(engagement_counts.values()) |
|
|
|
engaged_pct = ( |
|
(engagement_counts[self.ENGAGED_STR] / total_present_sessions * 100) |
|
if total_present_sessions > 0 else 0 |
|
) |
|
engaged_pct = round(engaged_pct) |
|
|
|
partially_engaged_pct = ( |
|
(engagement_counts[self.PARTIALLY_ENGAGED_STR] / total_present_sessions * 100) |
|
if total_present_sessions > 0 else 0 |
|
) |
|
partially_engaged_pct = round(partially_engaged_pct) |
|
|
|
not_engaged_pct = ( |
|
(engagement_counts[self.NOT_ENGAGED_STR] / total_present_sessions * 100) |
|
if total_present_sessions > 0 else 0 |
|
) |
|
not_engaged_pct = round(not_engaged_pct) |
|
|
|
|
|
engagement_pct = ( |
|
((engagement_counts[self.ENGAGED_STR] + engagement_counts[self.PARTIALLY_ENGAGED_STR]) / total_present_sessions * 100) |
|
if total_present_sessions > 0 else 0 |
|
) |
|
engagement_pct = round(engagement_pct) |
|
|
|
|
|
absent_sessions = student_data['Engagement'].value_counts().get('Absent', 0) |
|
absent_pct = (absent_sessions / intervention_sessions_held * 100) if intervention_sessions_held > 0 else 0 |
|
absent_pct = round(absent_pct) |
|
|
|
|
|
attended_90 = "Yes" if attendance_pct >= 90 else "No" |
|
|
|
|
|
engaged_80 = "Yes" if engagement_pct >= 80 else "No" |
|
|
|
|
|
student_metrics[student_name] = { |
|
'Attended ≥ 90%': attended_90, |
|
'Engagement ≥ 80%': engaged_80, |
|
'Attendance (%)': attendance_pct, |
|
'Engagement (%)': engagement_pct, |
|
f'{self.ENGAGED_STR} (%)': engaged_pct, |
|
f'{self.PARTIALLY_ENGAGED_STR} (%)': partially_engaged_pct, |
|
f'{self.NOT_ENGAGED_STR} (%)': not_engaged_pct, |
|
'Absent (%)': absent_pct |
|
} |
|
|
|
|
|
student_metrics_df = pd.DataFrame.from_dict(student_metrics, orient='index').reset_index() |
|
student_metrics_df.rename(columns={'index': 'Student'}, inplace=True) |
|
return student_metrics_df |
|
|
|
def compute_average_metrics(self, student_metrics_df): |
|
|
|
attendance_avg_stats = student_metrics_df['Attendance (%)'].mean() |
|
engagement_avg_stats = student_metrics_df['Engagement (%)'].mean() |
|
|
|
|
|
attendance_avg_stats = round(attendance_avg_stats) |
|
engagement_avg_stats = round(engagement_avg_stats) |
|
|
|
return attendance_avg_stats, engagement_avg_stats |
|
|
|
def evaluate_student(self, row, attendance_threshold=90, engagement_threshold=80): |
|
if row["Attended ≥ 90%"] == "No": |
|
return "Address Attendance" |
|
elif row["Engagement ≥ 80%"] == "No": |
|
return "Address Engagement" |
|
else: |
|
return "Consider barriers, fidelity, and progress monitoring" |