| import pandas as pd | |
| import os | |
| import re | |
| from huggingface_hub import InferenceClient | |
| class DataProcessor: | |
| INTERVENTION_COLUMN = 'Did the intervention happen today?' | |
| ENGAGED_STR = 'Engaged (Respect, Responsibility, Effort)' | |
| PARTIALLY_ENGAGED_STR = 'Partially Engaged (about 50%)' | |
| NOT_ENGAGED_STR = 'Not Engaged (less than 50%)' | |
| def __init__(self): | |
| self.hf_api_key = os.getenv('HF_API_KEY') | |
| if not self.hf_api_key: | |
| raise ValueError("HF_API_KEY not set in environment variables") | |
| self.client = InferenceClient(api_key=self.hf_api_key) | |
| def read_excel(self, uploaded_file): | |
| return pd.read_excel(uploaded_file) | |
| def format_session_data(self, df): | |
| df['Date of Session'] = self.safe_convert_to_datetime(df['Date of Session'], '%m/%d/%Y') | |
| df['Timestamp'] = self.safe_convert_to_datetime(df['Timestamp'], '%I:%M %p') | |
| df['Session Start Time'] = self.safe_convert_to_time(df['Session Start Time'], '%I:%M %p') | |
| df['Session End Time'] = self.safe_convert_to_time(df['Session End Time'], '%I:%M %p') | |
| df = df[['Date of Session', 'Timestamp'] + [col for col in df.columns if col not in ['Date of Session', 'Timestamp']]] | |
| return df | |
| def safe_convert_to_time(self, series, format_str='%I:%M %p'): | |
| try: | |
| converted = pd.to_datetime(series, format='%H:%M:%S', errors='coerce') | |
| if format_str: | |
| return converted.dt.strftime(format_str) | |
| return converted | |
| except Exception as e: | |
| print(f"Error converting series to time: {e}") | |
| return series | |
| def safe_convert_to_datetime(self, series, format_str=None): | |
| try: | |
| converted = pd.to_datetime(series, errors='coerce') | |
| if format_str: | |
| return converted.dt.strftime(format_str) | |
| return converted | |
| except Exception as e: | |
| print(f"Error converting series to datetime: {e}") | |
| return series | |
| def replace_student_names_with_initials(self, df): | |
| updated_columns = [] | |
| for col in df.columns: | |
| if col.startswith('Student Attendance'): | |
| match = re.match(r'Student Attendance \[(.+?)\]', col) | |
| if match: | |
| name = match.group(1) | |
| name_parts = name.split() | |
| if len(name_parts) == 1: | |
| initials = name_parts[0][0] | |
| else: | |
| initials = ''.join([part[0] for part in name_parts]) | |
| updated_columns.append(f'Student Attendance [{initials}]') | |
| else: | |
| updated_columns.append(col) | |
| else: | |
| updated_columns.append(col) | |
| df.columns = updated_columns | |
| return df | |
| def compute_intervention_statistics(self, df): | |
| total_days = len(df) | |
| sessions_held = df[self.INTERVENTION_COLUMN].str.strip().str.lower().eq('yes').sum() | |
| sessions_not_held = df[self.INTERVENTION_COLUMN].str.strip().str.lower().eq('no').sum() | |
| intervention_frequency = (sessions_held / total_days) * 100 if total_days > 0 else 0 | |
| intervention_frequency = round(intervention_frequency, 0) | |
| stats = { | |
| 'Intervention Frequency (%)': [intervention_frequency], | |
| 'Intervention Sessions Held': [sessions_held], | |
| 'Intervention Sessions Not Held': [sessions_not_held], | |
| 'Total Number of Days Available': [total_days] | |
| } | |
| return pd.DataFrame(stats) | |
| def compute_student_metrics(self, df): | |
| intervention_df = df[df[self.INTERVENTION_COLUMN].str.strip().str.lower() == 'yes'] | |
| intervention_sessions_held = len(intervention_df) | |
| student_columns = [col for col in df.columns if col.startswith('Student Attendance')] | |
| student_metrics = {} | |
| for col in student_columns: | |
| student_name = col.replace('Student Attendance [', '').replace(']', '').strip() | |
| student_data = intervention_df[[col]].copy() | |
| student_data[col] = student_data[col].fillna('Absent') | |
| attendance_values = student_data[col].apply(lambda x: 1 if x in [ | |
| self.ENGAGED_STR, | |
| self.PARTIALLY_ENGAGED_STR, | |
| self.NOT_ENGAGED_STR | |
| ] else 0) | |
| sessions_attended = attendance_values.sum() | |
| attendance_pct = (sessions_attended / intervention_sessions_held) * 100 if intervention_sessions_held > 0 else 0 | |
| attendance_pct = round(attendance_pct) | |
| engagement_counts = { | |
| 'Engaged': 0, | |
| 'Partially Engaged': 0, | |
| 'Not Engaged': 0, | |
| 'Absent': 0 | |
| } | |
| for x in student_data[col]: | |
| if x == self.ENGAGED_STR: | |
| engagement_counts['Engaged'] += 1 | |
| elif x == self.PARTIALLY_ENGAGED_STR: | |
| engagement_counts['Partially Engaged'] += 1 | |
| elif x == self.NOT_ENGAGED_STR: | |
| engagement_counts['Not Engaged'] += 1 | |
| else: | |
| engagement_counts['Absent'] += 1 | |
| total_sessions = sum(engagement_counts.values()) | |
| engagement_pct = (engagement_counts['Engaged'] / total_sessions * 100) if total_sessions > 0 else 0 | |
| engagement_pct = round(engagement_pct) | |
| student_metrics[student_name] = { | |
| 'Attendance (%)': attendance_pct, | |
| 'Attendance #': sessions_attended, | |
| 'Engagement (%)': engagement_pct | |
| } | |
| return pd.DataFrame.from_dict(student_metrics, orient='index').reset_index().rename(columns={'index': 'Student'}) | |
| def compute_average_metrics(self, student_metrics_df): | |
| attendance_avg_stats = student_metrics_df['Attendance (%)'].mean() | |
| engagement_avg_stats = student_metrics_df['Engagement (%)'].mean() | |
| return round(attendance_avg_stats), round(engagement_avg_stats) |