| # import re | |
| # import pandas as pd | |
| # import os | |
| # from huggingface_hub import InferenceClient | |
| # class DataProcessor: | |
| # INTERVENTION_COLUMN_OPTIONS = [ | |
| # 'Did the intervention happen today?', | |
| # 'Did the intervention take place today?' | |
| # ] | |
| # YES_RESPONSES = ['yes', 'assessment day'] # Added this line | |
| # ENGAGED_STR = 'Engaged' | |
| # PARTIALLY_ENGAGED_STR = 'Partially Engaged' | |
| # NOT_ENGAGED_STR = 'Not Engaged' | |
| # def __init__(self, student_metrics_df=None): | |
| # self.hf_api_key = os.getenv('HF_API_KEY') | |
| # if not self.hf_api_key: | |
| # raise ValueError("HF_API_KEY not set in environment variables") | |
| # self.client = InferenceClient(api_key=self.hf_api_key) | |
| # self.student_metrics_df = student_metrics_df | |
| # self.intervention_column = None # Will be set when processing data | |
| # def read_excel(self, uploaded_file): | |
| # return pd.read_excel(uploaded_file) | |
| # def format_session_data(self, df): | |
| # date_column = next((col for col in df.columns if col in ["Date of Session", "Date"]), None) | |
| # if date_column: | |
| # df[date_column] = pd.to_datetime(df[date_column], errors='coerce').dt.date | |
| # else: | |
| # print("Warning: Neither 'Date of Session' nor 'Date' column found in the dataframe.") | |
| # df['Timestamp'] = self.safe_convert_to_datetime(df['Timestamp'], '%I:%M %p') | |
| # df['Session Start Time'] = self.safe_convert_to_time(df['Session Start Time'], '%I:%M %p') | |
| # df['Session End Time'] = self.safe_convert_to_time(df['Session End Time'], '%I:%M %p') | |
| # return df | |
| # def safe_convert_to_time(self, series, format_str='%I:%M %p'): | |
| # try: | |
| # converted = pd.to_datetime(series, format='%H:%M:%S', errors='coerce') | |
| # if format_str: | |
| # return converted.dt.strftime(format_str) | |
| # return converted | |
| # except Exception as e: | |
| # print(f"Error converting series to time: {e}") | |
| # return series | |
| # def safe_convert_to_datetime(self, series, format_str=None): | |
| # try: | |
| # converted = pd.to_datetime(series, errors='coerce') | |
| # if format_str: | |
| # return converted.dt.strftime(format_str) | |
| # return converted | |
| # except Exception as e: | |
| # print(f"Error converting series to datetime: {e}") | |
| # return series | |
| # def replace_student_names_with_initials(self, df): | |
| # updated_columns = [] | |
| # for col in df.columns: | |
| # if 'Student Attendance' in col: | |
| # # Search for the last occurrence of text within square brackets at the end of the string | |
| # match = re.search(r'\[(.+?)\]$', col) | |
| # if not match: | |
| # # Handle cases where the closing bracket might be missing | |
| # match = re.search(r'\[(.+)$', col) | |
| # if match: | |
| # name = match.group(1).strip() | |
| # # Remove any trailing closing bracket if it wasn't matched earlier | |
| # name = name.rstrip(']') | |
| # # Get initials | |
| # initials = ''.join([part[0] for part in name.strip().split()]) | |
| # updated_col = f'Student Attendance [{initials}]' | |
| # updated_columns.append(updated_col) | |
| # else: | |
| # # If no match is found, keep the column name as is | |
| # updated_columns.append(col) | |
| # else: | |
| # updated_columns.append(col) | |
| # df.columns = updated_columns | |
| # return df | |
| # def find_intervention_column(self, df): | |
| # for column in self.INTERVENTION_COLUMN_OPTIONS: | |
| # if column in df.columns: | |
| # self.intervention_column = column | |
| # return column | |
| # raise ValueError("No intervention column found in the dataframe.") | |
| # def get_intervention_column(self, df): | |
| # if self.intervention_column is None: | |
| # self.intervention_column = self.find_intervention_column(df) | |
| # return self.intervention_column | |
| # def compute_intervention_statistics(self, df): | |
| # intervention_column = self.get_intervention_column(df) | |
| # total_days = len(df) | |
| # sessions_held = df[intervention_column].str.strip().str.lower().isin(self.YES_RESPONSES).sum() # Modified line | |
| # intervention_frequency = (sessions_held / total_days) * 100 if total_days > 0 else 0 | |
| # return pd.DataFrame({ | |
| # 'Intervention Dosage (%)': [round(intervention_frequency, 0)], | |
| # 'Intervention Sessions Held': [sessions_held], | |
| # 'Intervention Sessions Not Held': [total_days - sessions_held], | |
| # 'Total Number of Days Available': [total_days] | |
| # }) | |
| # def classify_engagement(self, engagement_str): | |
| # engagement_str = str(engagement_str).lower() | |
| # if engagement_str.startswith(self.ENGAGED_STR.lower()): | |
| # return self.ENGAGED_STR | |
| # elif engagement_str.startswith(self.PARTIALLY_ENGAGED_STR.lower()): | |
| # return self.PARTIALLY_ENGAGED_STR | |
| # elif engagement_str.startswith(self.NOT_ENGAGED_STR.lower()): | |
| # return self.NOT_ENGAGED_STR | |
| # else: | |
| # return 'Unknown' | |
| # def compute_student_metrics(self, df): | |
| # intervention_column = self.get_intervention_column(df) | |
| # intervention_df = df[df[intervention_column].str.strip().str.lower().isin(self.YES_RESPONSES)] | |
| # intervention_sessions_held = len(intervention_df) | |
| # student_columns = [col for col in df.columns if col.startswith('Student Attendance')] | |
| # student_metrics = {} | |
| # for col in student_columns: | |
| # student_name = col.replace('Student Attendance [', '').replace(']', '').strip() | |
| # student_data = intervention_df[[col]].copy() | |
| # student_data[col] = student_data[col].fillna('Absent') | |
| # # Classify each entry | |
| # student_data['Engagement'] = student_data[col].apply(self.classify_engagement) | |
| # # Calculate attendance | |
| # attendance_values = student_data['Engagement'].apply( | |
| # lambda x: 1 if x in [self.ENGAGED_STR, self.PARTIALLY_ENGAGED_STR, self.NOT_ENGAGED_STR] else 0 | |
| # ) | |
| # sessions_attended = attendance_values.sum() | |
| # attendance_pct = (sessions_attended / intervention_sessions_held * 100) if intervention_sessions_held > 0 else 0 | |
| # attendance_pct = round(attendance_pct) | |
| # # Engagement counts (excluding 'Absent') | |
| # engagement_counts = { | |
| # self.ENGAGED_STR: 0, | |
| # self.PARTIALLY_ENGAGED_STR: 0, | |
| # self.NOT_ENGAGED_STR: 0 | |
| # } | |
| # # Count the engagement types, excluding 'Absent' | |
| # for x in student_data['Engagement']: | |
| # if x in engagement_counts: | |
| # engagement_counts[x] += 1 | |
| # # 'Absent' is not counted in engagement_counts | |
| # total_present_sessions = sum(engagement_counts.values()) | |
| # engaged_pct = ( | |
| # (engagement_counts[self.ENGAGED_STR] / total_present_sessions * 100) | |
| # if total_present_sessions > 0 else 0 | |
| # ) | |
| # engaged_pct = round(engaged_pct) | |
| # partially_engaged_pct = ( | |
| # (engagement_counts[self.PARTIALLY_ENGAGED_STR] / total_present_sessions * 100) | |
| # if total_present_sessions > 0 else 0 | |
| # ) | |
| # partially_engaged_pct = round(partially_engaged_pct) | |
| # not_engaged_pct = ( | |
| # (engagement_counts[self.NOT_ENGAGED_STR] / total_present_sessions * 100) | |
| # if total_present_sessions > 0 else 0 | |
| # ) | |
| # not_engaged_pct = round(not_engaged_pct) | |
| # # Engagement percentage is based on Engaged and Partially Engaged sessions | |
| # engagement_pct = ( | |
| # ((engagement_counts[self.ENGAGED_STR] + engagement_counts[self.PARTIALLY_ENGAGED_STR]) / total_present_sessions * 100) | |
| # if total_present_sessions > 0 else 0 | |
| # ) | |
| # engagement_pct = round(engagement_pct) | |
| # # Absent percentage (for reference, not used in engagement calculation) | |
| # absent_sessions = student_data['Engagement'].value_counts().get('Absent', 0) | |
| # absent_pct = (absent_sessions / intervention_sessions_held * 100) if intervention_sessions_held > 0 else 0 | |
| # absent_pct = round(absent_pct) | |
| # # Determine if the student attended ≥ 90% of sessions | |
| # attended_90 = "Yes" if attendance_pct >= 90 else "No" | |
| # # Determine if the student was engaged ≥ 80% of the time | |
| # engaged_80 = "Yes" if engagement_pct >= 80 else "No" | |
| # # Store metrics | |
| # student_metrics[student_name] = { | |
| # 'Attended ≥ 90%': attended_90, | |
| # 'Engagement ≥ 80%': engaged_80, | |
| # 'Attendance (%)': attendance_pct, | |
| # 'Engagement (%)': engagement_pct, | |
| # f'{self.ENGAGED_STR} (%)': engaged_pct, | |
| # f'{self.PARTIALLY_ENGAGED_STR} (%)': partially_engaged_pct, | |
| # f'{self.NOT_ENGAGED_STR} (%)': not_engaged_pct, | |
| # 'Absent (%)': absent_pct | |
| # } | |
| # # Create a DataFrame from student_metrics | |
| # student_metrics_df = pd.DataFrame.from_dict(student_metrics, orient='index').reset_index() | |
| # student_metrics_df.rename(columns={'index': 'Student'}, inplace=True) | |
| # return student_metrics_df | |
| # def compute_average_metrics(self, student_metrics_df): | |
| # # Calculate the attendance and engagement average percentages across students | |
| # attendance_avg_stats = student_metrics_df['Attendance (%)'].mean() # Average attendance percentage | |
| # engagement_avg_stats = student_metrics_df['Engagement (%)'].mean() # Average engagement percentage | |
| # # Round the averages to whole numbers | |
| # attendance_avg_stats = round(attendance_avg_stats) | |
| # engagement_avg_stats = round(engagement_avg_stats) | |
| # return attendance_avg_stats, engagement_avg_stats | |
| # def evaluate_student(self, row, attendance_threshold=90, engagement_threshold=80): | |
| # if row["Attended ≥ 90%"] == "No": | |
| # return "Address Attendance" | |
| # elif row["Engagement ≥ 80%"] == "No": | |
| # return "Address Engagement" | |
| # else: | |
| # return "Consider barriers, fidelity, and progress monitoring" | |
| import re | |
| import pandas as pd | |
| import os | |
| # from huggingface_hub import InferenceClient | |
| from mistralai import Mistral | |
| class DataProcessor: | |
| INTERVENTION_COLUMN_OPTIONS = [ | |
| 'Did the intervention happen today?', | |
| 'Did the intervention take place today?' | |
| ] | |
| YES_RESPONSES = ['yes', 'assessment day'] # Added this line | |
| ENGAGED_STR = 'Engaged' | |
| PARTIALLY_ENGAGED_STR = 'Partially Engaged' | |
| NOT_ENGAGED_STR = 'Not Engaged' | |
| # HF INFERENCE | |
| # def __init__(self, student_metrics_df=None): | |
| # self.hf_api_key = os.getenv('HF_API_KEY') | |
| # if not self.hf_api_key: | |
| # raise ValueError("HF_API_KEY not set in environment variables") | |
| # self.client = InferenceClient(api_key=self.hf_api_key) | |
| # self.student_metrics_df = student_metrics_df | |
| # self.intervention_column = None # Will be set when processing data | |
| # MISTRAL INFERENCE | |
| def __init__(self, student_metrics_df=None): | |
| self.mistral_api_key = os.getenv('MISTRAL_API_KEY') | |
| if not self.mistral_api_key: | |
| raise ValueError("MISTRAL_API_KEY not set in environment variables") | |
| self.client = Mistral(api_key=self.mistral_api_key) | |
| self.student_metrics_df = student_metrics_df | |
| self.intervention_column = None # Will be set when processing data | |
| def read_excel(self, uploaded_file): | |
| return pd.read_excel(uploaded_file) | |
| def format_session_data(self, df): | |
| date_column = next((col for col in df.columns if col in ["Date of Session", "Date"]), None) | |
| if date_column: | |
| df[date_column] = pd.to_datetime(df[date_column], errors='coerce').dt.date | |
| else: | |
| print("Warning: Neither 'Date of Session' nor 'Date' column found in the dataframe.") | |
| df['Timestamp'] = self.safe_convert_to_datetime(df['Timestamp'], '%I:%M %p') | |
| df['Session Start Time'] = self.safe_convert_to_time(df['Session Start Time'], '%I:%M %p') | |
| df['Session End Time'] = self.safe_convert_to_time(df['Session End Time'], '%I:%M %p') | |
| return df | |
| def safe_convert_to_time(self, series, format_str='%I:%M %p'): | |
| try: | |
| converted = pd.to_datetime(series, format='%H:%M:%S', errors='coerce') | |
| if format_str: | |
| return converted.dt.strftime(format_str) | |
| return converted | |
| except Exception as e: | |
| print(f"Error converting series to time: {e}") | |
| return series | |
| def safe_convert_to_datetime(self, series, format_str=None): | |
| try: | |
| converted = pd.to_datetime(series, errors='coerce') | |
| if format_str: | |
| return converted.dt.strftime(format_str) | |
| return converted | |
| except Exception as e: | |
| print(f"Error converting series to datetime: {e}") | |
| return series | |
| def replace_student_names_with_initials(self, df): | |
| updated_columns = [] | |
| for col in df.columns: | |
| if 'Student Attendance' in col: | |
| # Search for the last occurrence of text within square brackets at the end of the string | |
| match = re.search(r'\[(.+?)\]$', col) | |
| if not match: | |
| # Handle cases where the closing bracket might be missing | |
| match = re.search(r'\[(.+)$', col) | |
| if match: | |
| name = match.group(1).strip() | |
| # Remove any trailing closing bracket if it wasn't matched earlier | |
| name = name.rstrip(']') | |
| # Get initials | |
| initials = ''.join([part[0] for part in name.strip().split()]) | |
| updated_col = f'Student Attendance [{initials}]' | |
| updated_columns.append(updated_col) | |
| else: | |
| # If no match is found, keep the column name as is | |
| updated_columns.append(col) | |
| else: | |
| updated_columns.append(col) | |
| df.columns = updated_columns | |
| return df | |
| def find_intervention_column(self, df): | |
| for column in self.INTERVENTION_COLUMN_OPTIONS: | |
| if column in df.columns: | |
| self.intervention_column = column | |
| return column | |
| raise ValueError("No intervention column found in the dataframe.") | |
| def get_intervention_column(self, df): | |
| if self.intervention_column is None: | |
| self.intervention_column = self.find_intervention_column(df) | |
| return self.intervention_column | |
| def compute_intervention_statistics(self, df): | |
| intervention_column = self.get_intervention_column(df) | |
| total_days = len(df) | |
| sessions_held = df[intervention_column].str.strip().str.lower().isin(self.YES_RESPONSES).sum() # Modified line | |
| intervention_frequency = (sessions_held / total_days) * 100 if total_days > 0 else 0 | |
| return pd.DataFrame({ | |
| 'Intervention Dosage (%)': [round(intervention_frequency, 0)], | |
| 'Intervention Sessions Held': [sessions_held], | |
| 'Intervention Sessions Not Held': [total_days - sessions_held], | |
| 'Total Number of Days Available': [total_days] | |
| }) | |
| def classify_engagement(self, engagement_str): | |
| engagement_str = str(engagement_str).lower() | |
| if engagement_str.startswith(self.ENGAGED_STR.lower()): | |
| return self.ENGAGED_STR | |
| elif engagement_str.startswith(self.PARTIALLY_ENGAGED_STR.lower()): | |
| return self.PARTIALLY_ENGAGED_STR | |
| elif engagement_str.startswith(self.NOT_ENGAGED_STR.lower()): | |
| return self.NOT_ENGAGED_STR | |
| else: | |
| return 'Unknown' | |
| def compute_student_metrics(self, df): | |
| intervention_column = self.get_intervention_column(df) | |
| intervention_df = df[df[intervention_column].str.strip().str.lower().isin(self.YES_RESPONSES)] | |
| intervention_sessions_held = len(intervention_df) | |
| student_columns = [col for col in df.columns if col.startswith('Student Attendance')] | |
| student_metrics = {} | |
| for col in student_columns: | |
| student_name = col.replace('Student Attendance [', '').replace(']', '').strip() | |
| student_data = intervention_df[[col]].copy() | |
| student_data[col] = student_data[col].fillna('Absent') | |
| # Classify each entry | |
| student_data['Engagement'] = student_data[col].apply(self.classify_engagement) | |
| # Calculate attendance | |
| attendance_values = student_data['Engagement'].apply( | |
| lambda x: 1 if x in [self.ENGAGED_STR, self.PARTIALLY_ENGAGED_STR, self.NOT_ENGAGED_STR] else 0 | |
| ) | |
| sessions_attended = attendance_values.sum() | |
| attendance_pct = (sessions_attended / intervention_sessions_held * 100) if intervention_sessions_held > 0 else 0 | |
| attendance_pct = round(attendance_pct) | |
| # Engagement counts (excluding 'Absent') | |
| engagement_counts = { | |
| self.ENGAGED_STR: 0, | |
| self.PARTIALLY_ENGAGED_STR: 0, | |
| self.NOT_ENGAGED_STR: 0 | |
| } | |
| # Count the engagement types, excluding 'Absent' | |
| for x in student_data['Engagement']: | |
| if x in engagement_counts: | |
| engagement_counts[x] += 1 | |
| # 'Absent' is not counted in engagement_counts | |
| total_present_sessions = sum(engagement_counts.values()) | |
| engaged_pct = ( | |
| (engagement_counts[self.ENGAGED_STR] / total_present_sessions * 100) | |
| if total_present_sessions > 0 else 0 | |
| ) | |
| engaged_pct = round(engaged_pct) | |
| partially_engaged_pct = ( | |
| (engagement_counts[self.PARTIALLY_ENGAGED_STR] / total_present_sessions * 100) | |
| if total_present_sessions > 0 else 0 | |
| ) | |
| partially_engaged_pct = round(partially_engaged_pct) | |
| not_engaged_pct = ( | |
| (engagement_counts[self.NOT_ENGAGED_STR] / total_present_sessions * 100) | |
| if total_present_sessions > 0 else 0 | |
| ) | |
| not_engaged_pct = round(not_engaged_pct) | |
| # Engagement percentage is based on Engaged and Partially Engaged sessions | |
| engagement_pct = ( | |
| ((engagement_counts[self.ENGAGED_STR] + engagement_counts[self.PARTIALLY_ENGAGED_STR]) / total_present_sessions * 100) | |
| if total_present_sessions > 0 else 0 | |
| ) | |
| engagement_pct = round(engagement_pct) | |
| # Absent percentage (for reference, not used in engagement calculation) | |
| absent_sessions = student_data['Engagement'].value_counts().get('Absent', 0) | |
| absent_pct = (absent_sessions / intervention_sessions_held * 100) if intervention_sessions_held > 0 else 0 | |
| absent_pct = round(absent_pct) | |
| # Determine if the student attended ≥ 90% of sessions | |
| attended_90 = "Yes" if attendance_pct >= 90 else "No" | |
| # Determine if the student was engaged ≥ 80% of the time | |
| engaged_80 = "Yes" if engagement_pct >= 80 else "No" | |
| # Store metrics | |
| student_metrics[student_name] = { | |
| 'Attended ≥ 90%': attended_90, | |
| 'Engagement ≥ 80%': engaged_80, | |
| 'Attendance (%)': attendance_pct, | |
| # 'Engagement (%)': engagement_pct, REMOVED REMOVED | |
| f'{self.ENGAGED_STR} (%)': engaged_pct, | |
| f'{self.PARTIALLY_ENGAGED_STR} (%)': partially_engaged_pct, | |
| f'{self.NOT_ENGAGED_STR} (%)': not_engaged_pct, | |
| 'Absent (%)': absent_pct | |
| } | |
| # Create a DataFrame from student_metrics | |
| student_metrics_df = pd.DataFrame.from_dict(student_metrics, orient='index').reset_index() | |
| student_metrics_df.rename(columns={'index': 'Student'}, inplace=True) | |
| return student_metrics_df | |
| def compute_average_metrics(self, student_metrics_df): | |
| # Calculate the attendance and engagement average percentages across students | |
| attendance_avg_stats = student_metrics_df['Attendance (%)'].mean() # Average attendance percentage | |
| # engagement_avg_stats = student_metrics_df['Engagement (%)'].mean() # Average engagement percentage REMOVED REMOVED | |
| engagement_avg_stats = student_metrics_df[f'{self.ENGAGED_STR} (%)'].mean() # Average engagement percentage | |
| # Round the averages to whole numbers | |
| attendance_avg_stats = round(attendance_avg_stats) | |
| engagement_avg_stats = round(engagement_avg_stats) | |
| return attendance_avg_stats, engagement_avg_stats | |
| def evaluate_student(self, row, attendance_threshold=90, engagement_threshold=80): | |
| if row["Attended ≥ 90%"] == "No": | |
| return "Address Attendance" | |
| elif row["Engagement ≥ 80%"] == "No": | |
| return "Address Engagement" | |
| else: | |
| return "Consider barriers, fidelity, and progress monitoring" |