| import streamlit as st | |
| import openai | |
| import random | |
| # Fetch the OpenAI API key from Streamlit secrets | |
| OPENAI_API_KEY = st.secrets["OPENAI_API_KEY"] | |
| # Retrieve the OpenAI API Key from secrets | |
| openai.api_key = st.secrets["OPENAI_API_KEY"] | |
| # # Fetch Pinecone API key and environment from Streamlit secrets | |
| PINECONE_API_KEY = st.secrets["PINECONE_API_KEY"] | |
| # # AUTHENTICATE/INITIALIZE PINCONE SERVICE | |
| from pinecone import Pinecone | |
| # PINECONE_API_KEY = "555c0e70-331d-4b43-aac7-5b3aac5078d6" | |
| pc = Pinecone(api_key=PINECONE_API_KEY) | |
| # # Define the name of the Pinecone index | |
| index_name = 'mimtssinkqa' | |
| # Initialize the OpenAI embeddings object | |
| from langchain_openai import OpenAIEmbeddings | |
| embeddings = OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY) | |
| # LOAD VECTOR STORE FROM EXISTING INDEX | |
| from langchain_community.vectorstores import Pinecone | |
| vector_store = Pinecone.from_existing_index(index_name='mimtssinkqa', embedding=embeddings) | |
| def ask_with_memory(vector_store, query, chat_history=[]): | |
| from langchain_openai import ChatOpenAI | |
| from langchain.chains import ConversationalRetrievalChain | |
| from langchain.memory import ConversationBufferMemory | |
| from langchain.prompts import ChatPromptTemplate, SystemMessagePromptTemplate, HumanMessagePromptTemplate | |
| llm = ChatOpenAI(model_name='gpt-3.5-turbo', temperature=0.5, openai_api_key=OPENAI_API_KEY) | |
| retriever = vector_store.as_retriever(search_type='similarity', search_kwargs={'k': 3}) | |
| memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True) | |
| system_template = r''' | |
| Article Title: 'Intensifying Literacy Instruction: Essential Practices.' | |
| Article Focus: The main focus of the article is reading and the secondary focus is writing. | |
| Expertise: Assume the role of an expert literacy coach with in-depth knowledge of the Simple View of Reading, School-Wide Positive Behavioral Interventions and Supports (SWPBIS), and Social Emotional Learning (SEL). | |
| Audience: Tailor your response for teachers and administrators seeking to enhance literacy instruction within their educational settings. | |
| Response Requirements: Provide an answer utilizing the context provided. Unless specifically requested by the user, avoid mentioning the article's header. | |
| Cover all necessary details relevant to the question posed, drawing on your expertise in literacy instruction and the Simple View of Reading. | |
| Utilize paragraphs for detailed and descriptive explanations, and bullet points for highlighting key points or steps, ensuring the information is easily understood. | |
| Conclude with a recapitulation of main points, summarizing the essential takeaways from your response. | |
| ---------------- | |
| Context: ```{context}``` | |
| ''' | |
| user_template = ''' | |
| Question: ```{question}``` | |
| Chat History: ```{chat_history}``` | |
| ''' | |
| messages= [ | |
| SystemMessagePromptTemplate.from_template(system_template), | |
| HumanMessagePromptTemplate.from_template(user_template) | |
| ] | |
| qa_prompt = ChatPromptTemplate.from_messages (messages) | |
| chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=retriever, memory=memory,chain_type='stuff', combine_docs_chain_kwargs={'prompt': qa_prompt}, verbose=False | |
| ) | |
| result = chain.invoke({'question': query, 'chat_history': st.session_state['history']}) | |
| # Append to chat history as a dictionary | |
| st.session_state['history'].append((query, result['answer'])) | |
| return (result['answer']) | |
| # Initialize chat history | |
| if 'history' not in st.session_state: | |
| st.session_state['history'] = [] | |
| # # STREAMLIT APPLICATION SETUP WITH PASSWORD | |
| # Define the correct password | |
| # correct_password = "MiBLSi" | |
| #Add the image with a specified width | |
| image_width = 300 # Set the desired width in pixels | |
| st.image('MTSS.ai_Logo.png', width=image_width) | |
| st.subheader('Ink QA™ | Dynamic PDFs') | |
| # Using Markdown for formatted text | |
| st.markdown(""" | |
| Resource: **Intensifying Literacy Instruction: Essential Practices** | |
| """, unsafe_allow_html=True) | |
| with st.sidebar: | |
| # Password input field | |
| # password = st.text_input("Enter Password:", type="password") | |
| st.image('mimtss.png', width=200) | |
| st.image('Literacy_Cover.png', width=200) | |
| st.link_button("View | Download", "https://mimtsstac.org/sites/default/files/session-documents/Intensifying%20Literacy%20Instruction%20-%20Essential%20Practices%20%28NATIONAL%29.pdf") | |
| Audio_Header_text = """ | |
| **Tune into Dr. St. Martin's introduction**""" | |
| st.markdown(Audio_Header_text) | |
| # Path or URL to the audio file | |
| audio_file_path = 'Audio_Introduction_Literacy.m4a' | |
| # Display the audio player widget | |
| st.audio(audio_file_path, format='audio/mp4', start_time=0) | |
| # Citation text with Markdown formatting | |
| citation_Content_text = """ | |
| **Citation** | |
| St. Martin, K., Vaughn, S., Troia, G., Fien, & H., Coyne, M. (2023). *Intensifying literacy instruction: Essential practices, Version 2.0*. Lansing, MI: MiMTSS Technical Assistance Center, Michigan Department of Education. | |
| **Table of Contents** | |
| * **Introduction**: pg. 1 | |
| * **Intensifying Literacy Instruction: Essential Practices**: pg. 4 | |
| * **Purpose**: pg. 4 | |
| * **Practice 1**: Knowledge and Use of a Learning Progression for Developing Skilled Readers and Writers: pg. 6 | |
| * **Practice 2**: Design and Use of an Intervention Platform as the Foundation for Effective Intervention: pg. 13 | |
| * **Practice 3**: On-going Data-Based Decision Making for Providing and Intensifying Interventions: pg. 16 | |
| * **Practice 4**: Adaptations to Increase the Instructional Intensity of the Intervention: pg. 20 | |
| * **Practice 5**: Infrastructures to Support Students with Significant and Persistent Literacy Needs: pg. 24 | |
| * **Motivation and Engagement**: pg. 28 | |
| * **Considerations for Understanding How Students' Learning and Behavior are Enhanced**: pg. 28 | |
| * **Summary**: pg. 29 | |
| * **Endnotes**: pg. 30 | |
| * **Acknowledgment**: pg. 39 | |
| """ | |
| st.markdown(citation_Content_text) | |
| # if password == correct_password: | |
| # Define a list of possible placeholder texts | |
| placeholders = [ | |
| 'Example: Summarize the article in 200 words or less', | |
| 'Example: What are the essential practices?', | |
| 'Example: I am a teacher, why is this resource important?', | |
| 'Example: How can this resource support my instruction in reading and writing?', | |
| 'Example: Does this resource align with the learning progression for developing skilled readers and writers?', | |
| 'Example: How does this resource address the needs of students scoring below the 20th percentile?', | |
| 'Example: Are there assessment tools included in this resource to monitor student progress?', | |
| 'Example: Does this resource provide guidance on data collection and analysis for monitoring student outcomes?', | |
| "Example: How can this resource be used to support students' social-emotional development?", | |
| "Example: How does this resource align with the district's literacy goals and objectives?", | |
| 'Example: What research and evidence support the effectiveness of this resource?', | |
| 'Example: Does this resource provide guidance on implementation fidelity' | |
| ] | |
| # Select a random placeholder from the list | |
| if 'placeholder' not in st.session_state: | |
| st.session_state.placeholder = random.choice(placeholders) | |
| q = st.text_input(label='Ask a question or make a request ', value='', placeholder=st.session_state.placeholder) | |
| # q = st.text_input(label='Ask a question or make a request ', value='') | |
| if q: | |
| with st.spinner('Thinking...'): | |
| answer = ask_with_memory(vector_store, q, st.session_state.history) | |
| # Display the response in a text area | |
| st.text_area('Response: ', value=answer, height=400, key="response_text_area") | |
| st.success('Powered by MTSS GPT. AI can make mistakes. Consider checking important information.') | |
| # Prepare chat history text for display | |
| # history_text = "\n\n".join(f"Q: {entry[0]}\nA: {entry[1]}" for entry in st.session_state.history) | |
| # Prepare chat history text for display in reverse order | |
| history_text = "\n\n".join(f"Q: {entry[0]}\nA: {entry[1]}" for entry in reversed(st.session_state.history)) | |
| # Display chat history | |
| st.text_area('Chat History', value=history_text, height=800) | |
| # import streamlit as st | |
| # import pinecone | |
| # from langchain.embeddings.openai import OpenAIEmbeddings | |
| # from langchain.vectorstores import Pinecone, Chroma | |
| # from langchain.chains import RetrievalQA | |
| # from langchain.chat_models import ChatOpenAI | |
| # import tiktoken | |
| # import random | |
| # # Fetch the OpenAI API key from Streamlit secrets | |
| # openai_api_key = st.secrets["openai_api_key"] | |
| # # Fetch Pinecone API key and environment from Streamlit secrets | |
| # pinecone_api_key = st.secrets["pinecone_api_key"] | |
| # pinecone_environment = st.secrets["pinecone_environment"] | |
| # # Initialize Pinecone | |
| # pinecone.init(api_key=pinecone_api_key, environment=pinecone_environment) | |
| # # Define the name of the Pinecone index | |
| # index_name = 'mi-resource-qa' | |
| # # Initialize the OpenAI embeddings object with the hardcoded API key | |
| # embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key) | |
| # # Define functions | |
| # def insert_or_fetch_embeddings(index_name): | |
| # if index_name in pinecone.list_indexes(): | |
| # vector_store = Pinecone.from_existing_index(index_name, embeddings) | |
| # return vector_store | |
| # else: | |
| # raise ValueError(f"Index {index_name} does not exist. Please create it before fetching.") | |
| # # Initialize or fetch Pinecone vector store | |
| # vector_store = insert_or_fetch_embeddings(index_name) | |
| # # calculate embedding cost using tiktoken | |
| # def calculate_embedding_cost(text): | |
| # import tiktoken | |
| # enc = tiktoken.encoding_for_model('text-embedding-ada-002') | |
| # total_tokens = len(enc.encode(text)) | |
| # # print(f'Total Tokens: {total_tokens}') | |
| # # print(f'Embedding Cost in USD: {total_tokens / 1000 * 0.0004:.6f}') | |
| # return total_tokens, total_tokens / 1000 * 0.0004 | |
| # def ask_with_memory(vector_store, query, chat_history=[]): | |
| # from langchain.chains import ConversationalRetrievalChain | |
| # from langchain.chat_models import ChatOpenAI | |
| # llm = ChatOpenAI(model_name='gpt-3.5-turbo', temperature=1, openai_api_key=openai_api_key) | |
| # # The retriever is created with metadata filter directly in search_kwargs | |
| # # retriever = vector_store.as_retriever(search_type='similarity', search_kwargs={'k': 3, 'filter': {'source': {'$eq': 'https://mimtsstac.org/sites/default/files/session-documents/Intensifying%20Literacy%20Instruction%20-%20Essential%20Practices%20%28NATIONAL%29.pdf'}}}) | |
| # retriever = vector_store.as_retriever(search_type='similarity', search_kwargs={'k': 3, 'filter': {'source':'https://mimtsstac.org/sites/default/files/session-documents/Intensifying%20Literacy%20Instruction%20-%20Essential%20Practices%20%28NATIONAL%29.pdf'}}) | |
| # chain= ConversationalRetrievalChain.from_llm(llm, retriever) | |
| # result = chain({'question': query, 'chat_history': st.session_state['history']}) | |
| # # Append to chat history as a dictionary | |
| # st.session_state['history'].append((query, result['answer'])) | |
| # return (result['answer']) | |
| # # Initialize chat history | |
| # if 'history' not in st.session_state: | |
| # st.session_state['history'] = [] | |
| # # # STREAMLIT APPLICATION SETUP WITH PASSWORD | |
| # # Define the correct password | |
| # # correct_password = "MiBLSi" | |
| # #Add the image with a specified width | |
| # image_width = 300 # Set the desired width in pixels | |
| # st.image('MTSS.ai_Logo.png', width=image_width) | |
| # st.subheader('Ink QA™ | Dynamic PDFs') | |
| # # Using Markdown for formatted text | |
| # st.markdown(""" | |
| # Resource: **Intensifying Literacy Instruction: Essential Practices** | |
| # """, unsafe_allow_html=True) | |
| # with st.sidebar: | |
| # # Password input field | |
| # # password = st.text_input("Enter Password:", type="password") | |
| # st.image('mimtss.png', width=200) | |
| # st.image('Literacy_Cover.png', width=200) | |
| # st.link_button("View | Download", "https://mimtsstac.org/sites/default/files/session-documents/Intensifying%20Literacy%20Instruction%20-%20Essential%20Practices%20%28NATIONAL%29.pdf") | |
| # Audio_Header_text = """ | |
| # **Tune into Dr. St. Martin's introduction**""" | |
| # st.markdown(Audio_Header_text) | |
| # # Path or URL to the audio file | |
| # audio_file_path = 'Audio_Introduction_Literacy.m4a' | |
| # # Display the audio player widget | |
| # st.audio(audio_file_path, format='audio/mp4', start_time=0) | |
| # # Citation text with Markdown formatting | |
| # citation_Content_text = """ | |
| # **Citation** | |
| # St. Martin, K., Vaughn, S., Troia, G., Fien, & H., Coyne, M. (2023). *Intensifying literacy instruction: Essential practices, Version 2.0*. Lansing, MI: MiMTSS Technical Assistance Center, Michigan Department of Education. | |
| # **Table of Contents** | |
| # * **Introduction**: pg. 1 | |
| # * **Intensifying Literacy Instruction: Essential Practices**: pg. 4 | |
| # * **Purpose**: pg. 4 | |
| # * **Practice 1**: Knowledge and Use of a Learning Progression for Developing Skilled Readers and Writers: pg. 6 | |
| # * **Practice 2**: Design and Use of an Intervention Platform as the Foundation for Effective Intervention: pg. 13 | |
| # * **Practice 3**: On-going Data-Based Decision Making for Providing and Intensifying Interventions: pg. 16 | |
| # * **Practice 4**: Adaptations to Increase the Instructional Intensity of the Intervention: pg. 20 | |
| # * **Practice 5**: Infrastructures to Support Students with Significant and Persistent Literacy Needs: pg. 24 | |
| # * **Motivation and Engagement**: pg. 28 | |
| # * **Considerations for Understanding How Students' Learning and Behavior are Enhanced**: pg. 28 | |
| # * **Summary**: pg. 29 | |
| # * **Endnotes**: pg. 30 | |
| # * **Acknowledgment**: pg. 39 | |
| # """ | |
| # st.markdown(citation_Content_text) | |
| # # if password == correct_password: | |
| # # Define a list of possible placeholder texts | |
| # placeholders = [ | |
| # 'Example: Summarize the article in 200 words or less', | |
| # 'Example: What are the essential practices?', | |
| # 'Example: I am a teacher, why is this resource important?', | |
| # 'Example: How can this resource support my instruction in reading and writing?', | |
| # 'Example: Does this resource align with the learning progression for developing skilled readers and writers?', | |
| # 'Example: How does this resource address the needs of students scoring below the 20th percentile?', | |
| # 'Example: Are there assessment tools included in this resource to monitor student progress?', | |
| # 'Example: Does this resource provide guidance on data collection and analysis for monitoring student outcomes?', | |
| # "Example: How can this resource be used to support students' social-emotional development?", | |
| # "Example: How does this resource align with the district's literacy goals and objectives?", | |
| # 'Example: What research and evidence support the effectiveness of this resource?', | |
| # 'Example: Does this resource provide guidance on implementation fidelity' | |
| # ] | |
| # # Select a random placeholder from the list | |
| # if 'placeholder' not in st.session_state: | |
| # st.session_state.placeholder = random.choice(placeholders) | |
| # q = st.text_input(label='Ask a question or make a request ', value='', placeholder=st.session_state.placeholder) | |
| # # q = st.text_input(label='Ask a question or make a request ', value='') | |
| # k = 3 # Set k to 3 | |
| # # # Initialize chat history if not present | |
| # # if 'history' not in st.session_state: | |
| # # st.session_state.history = [] | |
| # if q: | |
| # with st.spinner('Thinking...'): | |
| # answer = ask_with_memory(vector_store, q, st.session_state.history) | |
| # # Display the response in a text area | |
| # st.text_area('Response: ', value=answer, height=400, key="response_text_area") | |
| # st.success('Powered by MTSS GPT. AI can make mistakes. Consider checking important information.') | |
| # # # Prepare chat history text for display | |
| # # history_text = "\n\n".join(f"Q: {entry[0]}\nA: {entry[1]}" for entry in st.session_state.history) | |
| # # Prepare chat history text for display in reverse order | |
| # history_text = "\n\n".join(f"Q: {entry[0]}\nA: {entry[1]}" for entry in reversed(st.session_state.history)) | |
| # # Display chat history | |
| # st.text_area('Chat History', value=history_text, height=800) | |