Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,151 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import json
|
|
|
|
| 3 |
import random
|
| 4 |
import threading
|
| 5 |
import logging
|
| 6 |
-
import
|
| 7 |
-
from
|
|
|
|
| 8 |
|
| 9 |
-
import gradio as gr
|
| 10 |
import torch
|
| 11 |
-
from transformers import
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
-
# Logging setup
|
| 15 |
-
logging.basicConfig(level=logging.INFO)
|
| 16 |
-
logger = logging.getLogger(__name__)
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
model = AutoModelForCausalLM.from_pretrained(
|
| 22 |
-
|
| 23 |
torch_dtype=torch.float32,
|
| 24 |
-
device_map="cpu"
|
| 25 |
)
|
| 26 |
model.eval()
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
with gr.Row():
|
| 138 |
-
full_guess
|
| 139 |
-
idea_guess
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
|
| 150 |
if __name__ == "__main__":
|
| 151 |
-
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
what_comes_next.py – Hugging Face Space implementation of **What Comes Next**
|
| 4 |
+
A slow, contemplative global guessing game.
|
| 5 |
+
|
| 6 |
+
🔮 HOW IT WORKS 🔮
|
| 7 |
+
• A single Llama‑3.1‑8B‑Instruct model (FP32 on CPU) is generating one very long completion
|
| 8 |
+
for a chosen mystical prompt. It runs continuously in the background for everyone.
|
| 9 |
+
• Any visitor sees the same prompt and the Oracle’s current partial response.
|
| 10 |
+
• Players may submit *one* of two kinds of guesses:
|
| 11 |
+
1. 🧠 **Exact Completion** – the full sentence/paragraph they think the Oracle will
|
| 12 |
+
eventually write.
|
| 13 |
+
2. 💡 **General Idea** – a short summary of the direction or theme they expect.
|
| 14 |
+
• Each guess is recorded immediately (with timestamp, Oracle progress, etc.) to
|
| 15 |
+
`data.json` (JSON‑Lines). When the Oracle finally finishes, offline evaluation can
|
| 16 |
+
score the guesses against the final text.
|
| 17 |
+
|
| 18 |
+
The game then moves on to the next prompt and the cycle repeats.
|
| 19 |
+
"""
|
| 20 |
+
|
| 21 |
import os
|
| 22 |
import json
|
| 23 |
+
import time
|
| 24 |
import random
|
| 25 |
import threading
|
| 26 |
import logging
|
| 27 |
+
from datetime import datetime, timezone
|
| 28 |
+
from pathlib import Path
|
| 29 |
+
from typing import Dict, Any
|
| 30 |
|
|
|
|
| 31 |
import torch
|
| 32 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
| 33 |
+
import gradio as gr
|
| 34 |
+
|
| 35 |
+
###############################################################################
|
| 36 |
+
# Settings #
|
| 37 |
+
###############################################################################
|
| 38 |
+
MODEL_NAME = "meta-llama/Llama-3.1-8B-Instruct" # FP32, CPU‑only
|
| 39 |
+
PROMPTS_PATH = "oracle_prompts.json" # 100 unfinished lines
|
| 40 |
+
STATE_PATH = "current_state.json" # persistent Oracle state
|
| 41 |
+
DATA_PATH = "data.json" # JSONL of user guesses
|
| 42 |
+
TOKENS_PER_PROMPT = 2048 # stop after N tokens
|
| 43 |
+
SECS_BETWEEN_TOKENS = 15 # pacing (≈10h / prompt)
|
| 44 |
+
TEMPERATURE = 0.8
|
| 45 |
+
TOP_P = 0.95
|
| 46 |
+
MAX_CONTEXT_TOKENS = 8192
|
| 47 |
+
###############################################################################
|
| 48 |
+
|
| 49 |
+
logging.basicConfig(format="[%(asctime)s] %(levelname)s: %(message)s", level=logging.INFO)
|
| 50 |
+
log = logging.getLogger("what‑comes‑next")
|
| 51 |
+
|
| 52 |
+
lock = threading.Lock() # global file/variable lock
|
| 53 |
+
|
| 54 |
+
# --------------------------------------------------------------------------- #
|
| 55 |
+
# Helper functions #
|
| 56 |
+
# --------------------------------------------------------------------------- #
|
| 57 |
+
|
| 58 |
+
def _read_json(path: str, default: Any):
|
| 59 |
+
try:
|
| 60 |
+
with open(path, "r", encoding="utf‑8") as f:
|
| 61 |
+
return json.load(f)
|
| 62 |
+
except FileNotFoundError:
|
| 63 |
+
return default
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def _write_json(path: str, obj: Any):
|
| 67 |
+
tmp = f"{path}.tmp"
|
| 68 |
+
with open(tmp, "w", encoding="utf‑8") as f:
|
| 69 |
+
json.dump(obj, f, ensure_ascii=False, indent=2)
|
| 70 |
+
os.replace(tmp, path)
|
| 71 |
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
+
def load_prompts() -> list[str]:
|
| 74 |
+
if not os.path.exists(PROMPTS_PATH):
|
| 75 |
+
raise FileNotFoundError(f"Missing {PROMPTS_PATH}. Please add 100 prompts.")
|
| 76 |
+
with open(PROMPTS_PATH, "r", encoding="utf‑8") as f:
|
| 77 |
+
return json.load(f)
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
prompts = load_prompts()
|
| 81 |
+
|
| 82 |
+
# --------------------------------------------------------------------------- #
|
| 83 |
+
# Model loading (FP32 ‑ CPU) #
|
| 84 |
+
# --------------------------------------------------------------------------- #
|
| 85 |
+
log.info("Loading Llama‑3.1‑8B‑Instruct in FP32 on CPU (this is *slow*) …")
|
| 86 |
+
|
| 87 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 88 |
model = AutoModelForCausalLM.from_pretrained(
|
| 89 |
+
MODEL_NAME,
|
| 90 |
torch_dtype=torch.float32,
|
| 91 |
+
device_map={"": "cpu"}, # force CPU
|
| 92 |
)
|
| 93 |
model.eval()
|
| 94 |
+
log.info("Model loaded.")
|
| 95 |
+
|
| 96 |
+
# --------------------------------------------------------------------------- #
|
| 97 |
+
# Oracle generation thread #
|
| 98 |
+
# --------------------------------------------------------------------------- #
|
| 99 |
+
|
| 100 |
+
def init_state() -> Dict[str, Any]:
|
| 101 |
+
"""Return existing state or create a new one."""
|
| 102 |
+
state = _read_json(STATE_PATH, {})
|
| 103 |
+
if state.get("finished", False):
|
| 104 |
+
state = {} # finished, start new prompt
|
| 105 |
+
if not state:
|
| 106 |
+
prompt_idx = random.randrange(len(prompts))
|
| 107 |
+
prompt = prompts[prompt_idx]
|
| 108 |
+
state = {
|
| 109 |
+
"prompt_idx": prompt_idx,
|
| 110 |
+
"prompt": prompt,
|
| 111 |
+
"generated": "", # Oracle’s text so far (string)
|
| 112 |
+
"start_time": time.time(),
|
| 113 |
+
"finished": False,
|
| 114 |
+
"tokens_done": 0
|
| 115 |
+
}
|
| 116 |
+
_write_json(STATE_PATH, state)
|
| 117 |
+
log.info(f"Starting new Oracle prompt #{prompt_idx}: {prompt[:60]}…")
|
| 118 |
+
return state
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
def oracle_loop():
|
| 122 |
+
"""Continuously extend the Oracle’s text by one token every SECS_BETWEEN_TOKENS."""
|
| 123 |
+
while True:
|
| 124 |
+
with lock:
|
| 125 |
+
state = init_state()
|
| 126 |
+
if state["finished"]:
|
| 127 |
+
# Should not happen, but guard anyway
|
| 128 |
+
time.sleep(SECS_BETWEEN_TOKENS)
|
| 129 |
+
continue
|
| 130 |
+
prompt_text = state["prompt"]
|
| 131 |
+
generated_text = state["generated"]
|
| 132 |
+
tokens_done = state["tokens_done"]
|
| 133 |
+
|
| 134 |
+
# Build input_ids (prompt + generated so far)
|
| 135 |
+
full_input = prompt_text + generated_text
|
| 136 |
+
input_ids = tokenizer(full_input, return_tensors="pt", truncation=True, max_length=MAX_CONTEXT_TOKENS).input_ids
|
| 137 |
+
|
| 138 |
+
# Generate ONE token
|
| 139 |
+
with torch.no_grad():
|
| 140 |
+
outputs = model.generate(
|
| 141 |
+
input_ids,
|
| 142 |
+
max_new_tokens=1,
|
| 143 |
+
do_sample=True,
|
| 144 |
+
temperature=TEMPERATURE,
|
| 145 |
+
top_p=TOP_P,
|
| 146 |
+
)
|
| 147 |
+
next_token_id = outputs[0, -1].unsqueeze(0)
|
| 148 |
+
next_token_text = tokenizer.decode(next_token_id, skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
| 149 |
+
|
| 150 |
+
with lock:
|
| 151 |
+
# Update state
|
| 152 |
+
state["generated"] += next_token_text
|
| 153 |
+
state["tokens_done"] += 1
|
| 154 |
+
if state["tokens_done"] >= TOKENS_PER_PROMPT:
|
| 155 |
+
state["finished"] = True
|
| 156 |
+
log.info("Prompt complete. Oracle will pick a new one next cycle.")
|
| 157 |
+
_write_json(STATE_PATH, state)
|
| 158 |
+
time.sleep(SECS_BETWEEN_TOKENS) # pacing
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
threading.Thread(target=oracle_loop, daemon=True).start()
|
| 162 |
+
|
| 163 |
+
# --------------------------------------------------------------------------- #
|
| 164 |
+
# Gradio Interface #
|
| 165 |
+
# --------------------------------------------------------------------------- #
|
| 166 |
+
|
| 167 |
+
def human_readable_elapsed(start: float) -> str:
|
| 168 |
+
delta = int(time.time() - start)
|
| 169 |
+
h, rem = divmod(delta, 3600)
|
| 170 |
+
m, s = divmod(rem, 60)
|
| 171 |
+
return f"{h}h {m}m {s}s"
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
def get_current_state() -> Dict[str, Any]:
|
| 175 |
+
with lock:
|
| 176 |
+
state = _read_json(STATE_PATH, {})
|
| 177 |
+
if not state:
|
| 178 |
+
return {"prompt": "…loading…", "generated": "", "elapsed": "0h 0m 0s"}
|
| 179 |
+
return {
|
| 180 |
+
"prompt": state["prompt"],
|
| 181 |
+
"generated": state["generated"],
|
| 182 |
+
"elapsed": human_readable_elapsed(state["start_time"])
|
| 183 |
+
}
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
def record_guess(full_guess: str, idea_guess: str):
|
| 187 |
+
state = get_current_state()
|
| 188 |
+
guess_text = full_guess.strip() or idea_guess.strip()
|
| 189 |
+
if not guess_text:
|
| 190 |
+
return gr.update(value="⚠️ Please enter a guess in one of the boxes …"), gr.update()
|
| 191 |
+
guess_type = "full" if full_guess.strip() else "idea"
|
| 192 |
+
record = {
|
| 193 |
+
"timestamp": datetime.now(timezone.utc).isoformat(),
|
| 194 |
+
"prompt": state["prompt"],
|
| 195 |
+
"point‑in‑time": state["elapsed"],
|
| 196 |
+
"response‑point": state["generated"],
|
| 197 |
+
"user‑guess": guess_text,
|
| 198 |
+
"guess‑type": guess_type
|
| 199 |
+
}
|
| 200 |
+
# Append to JSONL (data.json)
|
| 201 |
+
with lock:
|
| 202 |
+
with open(DATA_PATH, "a", encoding="utf‑8") as f:
|
| 203 |
+
f.write(json.dumps(record, ensure_ascii=False) + "\n")
|
| 204 |
+
log.info(f"Recorded {guess_type} guess ({len(guess_text)} chars).")
|
| 205 |
+
return gr.update(value="✅ Guess recorded – check back when the Oracle finishes!"), gr.update(value="")
|
| 206 |
+
|
| 207 |
+
|
| 208 |
+
with gr.Blocks(title="What Comes Next", theme="gradio/soft") as demo:
|
| 209 |
+
gr.Markdown("""# ✨ What Comes Next
|
| 210 |
+
A global, slow‑burn guessing game. The Oracle is continuously writing its story.
|
| 211 |
+
Read the prompt, see the Oracle’s progress, and predict **what comes next**!
|
| 212 |
+
*(FP32 CPU inference – deliberately unhurried.)*""")
|
| 213 |
+
|
| 214 |
+
### Live Oracle view
|
| 215 |
+
prompt_box = gr.Markdown(label="🔮 Current Oracle Prompt")
|
| 216 |
+
oracle_box = gr.Textbox(label="📜 Oracle’s current text", lines=10, interactive=False)
|
| 217 |
+
elapsed_box = gr.Textbox(label="⏱️ Elapsed", interactive=False)
|
| 218 |
+
|
| 219 |
+
### Guess inputs
|
| 220 |
+
gr.Markdown("**Make your prediction:** Fill **either** the exact continuation *or* a general idea.")
|
| 221 |
with gr.Row():
|
| 222 |
+
full_guess = gr.Textbox(label="🧠 Exact continuation (full)")
|
| 223 |
+
idea_guess = gr.Textbox(label="💡 General idea")
|
| 224 |
+
submit_btn = gr.Button("Submit Guess")
|
| 225 |
+
status_msg = gr.Textbox(label="Status", interactive=False)
|
| 226 |
+
|
| 227 |
+
### Refresh button
|
| 228 |
+
refresh_btn = gr.Button("🔄 Refresh Oracle progress")
|
| 229 |
+
|
| 230 |
+
def refresh():
|
| 231 |
+
st = get_current_state()
|
| 232 |
+
return st["prompt"], st["generated"], st["elapsed"]
|
| 233 |
+
|
| 234 |
+
refresh_btn.click(refresh, outputs=[prompt_box, oracle_box, elapsed_box])
|
| 235 |
+
demo.load(refresh, outputs=[prompt_box, oracle_box, elapsed_box]) # auto‑load on launch
|
| 236 |
+
|
| 237 |
+
submit_btn.click(record_guess,
|
| 238 |
+
inputs=[full_guess, idea_guess],
|
| 239 |
+
outputs=[status_msg, full_guess]) # clear full_guess box on success
|
| 240 |
|
| 241 |
if __name__ == "__main__":
|
| 242 |
+
demo.launch(server_name="0.0.0.0", server_port=7860, show_error=True)
|