import gradio as gr from transformers import Qwen2VLForConditionalGeneration, AutoProcessor from qwen_vl_utils import process_vision_info model = Qwen2VLForConditionalGeneration.from_pretrained( "prithivMLmods/Radiology-Infer-Mini", torch_dtype="auto", device_map="auto" ) processor = AutoProcessor.from_pretrained("prithivMLmods/Radiology-Infer-Mini") def generate_report(image, text): # Prepare the message messages = [ { "role": "user", "content": [ {"type": "image", "image": image}, {"type": "text", "text": text}, ], } ] text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cpu") generated_ids = model.generate(**inputs, max_new_tokens=128) generated_ids_trimmed = [ out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) return output_text[0] interface = gr.Interface( fn=generate_report, inputs=[ gr.Image(type="pil", label="Upload Image"), gr.Textbox(label="Enter Description/Query", placeholder="Enter your query here..."), ], outputs=gr.Textbox(label="Generated Report"), title="Pter.AI Report Generator", description="Upload a medical image and provide a description/query to generate a radiology report.", ) interface.launch()