Update app.py
Browse files
app.py
CHANGED
@@ -3,31 +3,8 @@ import os
|
|
3 |
from PIL import Image
|
4 |
import numpy as np
|
5 |
import pickle
|
6 |
-
import tensorflow as tf
|
7 |
-
from tensorflow.keras.preprocessing import image
|
8 |
-
from tensorflow.keras.layers import GlobalMaxPooling2D
|
9 |
-
from tensorflow.keras.applications.resnet50 import ResNet50, preprocess_input
|
10 |
-
from sklearn.neighbors import NearestNeighbors
|
11 |
-
from numpy.linalg import norm
|
12 |
from chatbot import Chatbot # Assuming you have a chatbot module
|
13 |
|
14 |
-
# Define function for feature extraction
|
15 |
-
def feature_extraction(img_path, model):
|
16 |
-
img = image.load_img(img_path, target_size=(224, 224))
|
17 |
-
img_array = image.img_to_array(img)
|
18 |
-
expanded_img_array = np.expand_dims(img_array, axis=0)
|
19 |
-
preprocessed_img = preprocess_input(expanded_img_array)
|
20 |
-
result = model.predict(preprocessed_img).flatten()
|
21 |
-
normalized_result = result / norm(result)
|
22 |
-
return normalized_result
|
23 |
-
|
24 |
-
# Define function for recommendation
|
25 |
-
def recommend(features, feature_list):
|
26 |
-
neighbors = NearestNeighbors(n_neighbors=6, algorithm='brute', metric='euclidean')
|
27 |
-
neighbors.fit(feature_list)
|
28 |
-
distances, indices = neighbors.kneighbors([features])
|
29 |
-
return indices
|
30 |
-
|
31 |
# Function to save uploaded file
|
32 |
def save_uploaded_file(uploaded_file):
|
33 |
try:
|
@@ -46,17 +23,6 @@ def show_dashboard():
|
|
46 |
chatbot = Chatbot()
|
47 |
chatbot.load_data()
|
48 |
|
49 |
-
# Load ResNet model for image feature extraction
|
50 |
-
model = ResNet50(weights='imagenet', include_top=False, input_shape=(224, 224, 3))
|
51 |
-
model.trainable = False
|
52 |
-
model = tf.keras.Sequential([
|
53 |
-
model,
|
54 |
-
GlobalMaxPooling2D()
|
55 |
-
])
|
56 |
-
|
57 |
-
feature_list = np.array(pickle.load(open('embeddings.pkl', 'rb')))
|
58 |
-
filenames = pickle.load(open('filenames.pkl', 'rb'))
|
59 |
-
|
60 |
# File upload section
|
61 |
uploaded_file = st.file_uploader("Choose an image")
|
62 |
if uploaded_file is not None:
|
@@ -65,24 +31,26 @@ def show_dashboard():
|
|
65 |
display_image = Image.open(uploaded_file)
|
66 |
st.image(display_image)
|
67 |
|
68 |
-
#
|
69 |
-
|
|
|
|
|
70 |
|
71 |
-
#
|
72 |
-
|
73 |
|
74 |
-
# Display recommended products
|
75 |
col1, col2, col3, col4, col5 = st.columns(5)
|
76 |
with col1:
|
77 |
-
st.image(chatbot.images[
|
78 |
with col2:
|
79 |
-
st.image(chatbot.images[
|
80 |
with col3:
|
81 |
-
st.image(chatbot.images[
|
82 |
with col4:
|
83 |
-
st.image(chatbot.images[
|
84 |
with col5:
|
85 |
-
st.image(chatbot.images[
|
86 |
|
87 |
else:
|
88 |
st.header("Some error occurred in file upload")
|
@@ -115,4 +83,4 @@ def main():
|
|
115 |
|
116 |
# Run the main app
|
117 |
if __name__ == "__main__":
|
118 |
-
main()
|
|
|
3 |
from PIL import Image
|
4 |
import numpy as np
|
5 |
import pickle
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
from chatbot import Chatbot # Assuming you have a chatbot module
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
# Function to save uploaded file
|
9 |
def save_uploaded_file(uploaded_file):
|
10 |
try:
|
|
|
23 |
chatbot = Chatbot()
|
24 |
chatbot.load_data()
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
# File upload section
|
27 |
uploaded_file = st.file_uploader("Choose an image")
|
28 |
if uploaded_file is not None:
|
|
|
31 |
display_image = Image.open(uploaded_file)
|
32 |
st.image(display_image)
|
33 |
|
34 |
+
# Generate image caption
|
35 |
+
image_path = os.path.join("uploads", uploaded_file.name)
|
36 |
+
caption = chatbot.generate_image_caption(image_path)
|
37 |
+
st.write("Generated Caption:", caption)
|
38 |
|
39 |
+
# Use caption to get product recommendations
|
40 |
+
_, recommended_products = chatbot.generate_response(caption)
|
41 |
|
42 |
+
# Display recommended products
|
43 |
col1, col2, col3, col4, col5 = st.columns(5)
|
44 |
with col1:
|
45 |
+
st.image(chatbot.images[recommended_products[0]['corpus_id']])
|
46 |
with col2:
|
47 |
+
st.image(chatbot.images[recommended_products[1]['corpus_id']])
|
48 |
with col3:
|
49 |
+
st.image(chatbot.images[recommended_products[2]['corpus_id']])
|
50 |
with col4:
|
51 |
+
st.image(chatbot.images[recommended_products[3]['corpus_id']])
|
52 |
with col5:
|
53 |
+
st.image(chatbot.images[recommended_products[4]['corpus_id']])
|
54 |
|
55 |
else:
|
56 |
st.header("Some error occurred in file upload")
|
|
|
83 |
|
84 |
# Run the main app
|
85 |
if __name__ == "__main__":
|
86 |
+
main()
|