import gradio as gr from model import DemoModel import json import numpy as np from fetch_prod import Scraper from copy import deepcopy from custom_label import format_labels_html from pdb import set_trace as bp model = DemoModel() examples = json.load(open('amzn_examples.json')) # cache = {x['text']: {'label': x['label']} for x in examples} cache = json.load(open('cache.json')) unseen_labels = {x.strip() for x in open('cleaned_code/datasets/Amzn13K/unseen_labels_split6500_2.txt')} all_labels = {x.strip() for x in open('cleaned_code/datasets/Amzn13K/all_labels.txt')} descriptions_visible = False scraper = Scraper() def format_gold_label_text(tex): if tex not in cache: return [] if 'label' not in cache[tex]: return [] return sorted([(x, 'Unseen' if x in unseen_labels else 'Seen' if x in all_labels else 'No Descriptions Available') for x in cache[tex]['label']], key = lambda x: (x[1], x[0]))[::-1] def extract_topk(preds, is_unseen , k = 5): preds_clone = deepcopy(preds) preds_dic = preds_clone['preds'] # bp() if is_unseen: preds_dic = {k:preds_dic[k] for k in set(preds_dic.keys()).intersection(unseen_labels)} if 'label' in preds_clone: preds_clone['label'] = list(set(preds_clone['label']).intersection(unseen_labels)) else: if 'label' in preds_clone: preds_clone['label'] = list(set(preds_clone['label']).intersection(all_labels)) preds_dic = {k:v for k,v in sorted(preds_dic.items(), key = lambda x: -x[1])[:k]} # bp() preds_clone['preds'] = preds_dic return preds_clone def classify(text, is_unseen): print(is_unseen) print('See this', text) if text in cache and 'preds' in cache[text]: print('Using Cached Result') return extract_topk(cache[text], is_unseen)#['preds'] preds, descs = model.classify(text, unseen_labels if is_unseen else None) if text not in cache: cache[text] = dict() cache[text]['preds'] = preds cache[text]['descs'] = descs json.dump(cache, open('cache.json','w'), indent = 2) print(text, preds) # return preds return extract_topk(cache[text], is_unseen) def scrape_click(url): out = scraper.get_product(url) if isinstance(out, str): if out == 'Invalid URL': raise gr.Error("Please enter a valid Amazon URL") else: print('Error Occured', out) raise gr.Error("Error Occured. Check the URL or try again later.") return text = out['description'] if text not in cache: cache[text] = {'label': out['labels']} return gr.update(value = out['description']) def get_random_example(): return np.random.choice(examples)['text'] def toggle_descriptions_fn(): print('Toggling descriptions visibility') global descriptions_visible descriptions_visible = not descriptions_visible return descriptions_visible # for example in examples: # classify(example['text'], False) with gr.Blocks(css="#warning {height: 100%}") as demo: with gr.Column(): title = "

SemSup-XC: Semantic Supervision for Extreme Classification

" # gr.HTML(title) gr.Markdown( "

" + title + "

" ) description = "

Pranjal Aggarwal, Ameet Deshpande, Karthik Narasimhan

" \ + "

Project Page | Paper | Github Repo

" \ + "

\ Extreme classification (XC) considers the scenario of predicting over a very large number of classes (thousands to millions), with real-world applications including serving search engine results, e-commerce product tagging, and news article classification. A real-life requirement in this domain is to predict from labels unseen during training(Zero-Shot), however there have been very little success in this domain. To this end, we propose SemSup-XC, a model that achieves state-of-the-art zero-shot (ZS) and few-shot (FS) performance on three extreme classification benchmarks spanning various domains. Instead of treating labels as class ids, our model learns from diverse descriptions of them, thereby attaining a more better understanding of the label space, evident from qualitative and quantitative results. \

" \ # gr.HTML(description) gr.Markdown(description) # head_html = gr.HTML(''' #

# SemSup-XC #

#

# Ask stable diffusion for images by speaking (or singing 🤗) in your native language ! Try it in French 😉 #

#

# This demo is wired to the official SD Space • Offered by Sylvain @fffiloni • visitor badge
# — #

# ''') gr.Markdown( """

Our model was trained on over 1 million product descriptions from Amazon on 6500 different categories. SemSup-XC can generalize to both seen and unseen labels. You can either use already available examples or enter your own text to classify. You can also fetch product descriptions by simply entering the product link, and classify categories on both seen and unseen labels. """ ) with gr.Tab(label = "Amazon"): # with gr.Row(): # with gr.Column(scale = 4): url_textbox = gr.Textbox( label = 'URL for Amazon Product', lines=1, interactive=True ) # with gr.Column(scale = 1): # scrape_btn = CustomButton(value = 'Fetch')#gr.Button('Fetch') scrape_btn = gr.Button('Fetch', variant='primary') # example_selection_dropdown = gr.Dropdown(choices = ["Example 1", "Example 2", "Example 3"], value = "Example 1", label = "Select an Example", interactive = True) text_box = gr.Textbox( label="Text to Classify", lines=4, interactive=True, value = get_random_example(), ) # example_selection_dropdown.change(fn=lambda value: gr.update(value=value), inputs=example_selection_dropdown, outputs=text_box) with gr.Row(): classify_btn = gr.Button("Classify", variant = 'primary') random_example_btn = gr.Button("Try Random") radio_btn = gr.Radio(choices = ['Unseen Labels', 'All Labels'], value = 'Unseen Labels', label = 'Classify on', interactive = True) # classified_labels_text = gr.Label( # label = "Predicted Classes", # visible = False, # num_top_classes = 5, # ) # classified_labels_text.style(True) with gr.Column(variant = 'panel'): label_html = gr.HTML('''''', visible=False) with gr.Row(): with gr.Column(scale = 8): gold_labels = gr.HighlightedText( label="Gold Labels", value=[("Label 1", "Seen"), ("Label 2", "Seen"), ("Label 3", "Unseen"), ("Label 4", "No Descriptions Available")], disabled=True, visible=False ) with gr.Column(scale = 1): toggle_descriptions = gr.Button( "Toggle Descriptions", visible= False, elem_id='warning' ) gold_labels.style(color_map = {'Seen': 'green', 'Unseen': 'blue', 'No Descriptions': 'gray'}) # label_html2 = gr.HTML('''''', visible=False) # classify_btn.click(lambda value, is_unseen: gr.update(value = classify(value, is_unseen == 'Unseen Labels'), visible = True), inputs = [text_box, radio_btn], outputs=classified_labels_text) classify_btn.click(lambda value, is_unseen: gr.update(value = format_labels_html(classify(value, is_unseen == 'Unseen Labels'), desc_is_visible = descriptions_visible), visible = True), inputs = [text_box, radio_btn], outputs=label_html) classify_btn.click(lambda x: gr.update(visible=True), inputs = classify_btn, outputs = label_html) random_example_btn.click(lambda value: gr.update(value = get_random_example()), inputs= random_example_btn, outputs=text_box) random_example_btn.click(lambda value: (gr.update(visible = False), gr.update(visible = False), gr.update(visible = False)), inputs = random_example_btn, outputs=[label_html, gold_labels, toggle_descriptions]) # radio_btn.change(lambda value: gr.update(visible)) radio_btn.change(lambda value, is_unseen: gr.update(value = format_labels_html(classify(value, is_unseen == 'Unseen Labels'), desc_is_visible = descriptions_visible)), inputs = [text_box, radio_btn], outputs=label_html) scrape_btn.click(lambda value : scrape_click(value), inputs = url_textbox, outputs = text_box) classify_btn.click(lambda x : gr.update(value = format_gold_label_text(x), visible = x in cache and 'label' in cache[x]), inputs = text_box, outputs = gold_labels) classify_btn.click(lambda x : gr.update(visible = True), inputs = text_box, outputs = toggle_descriptions) toggle_descriptions.click(lambda value, is_unseen: gr.update(value = format_labels_html(classify(value, is_unseen == 'Unseen Labels'), desc_is_visible = toggle_descriptions_fn()), visible = True), inputs = [text_box, radio_btn], outputs=label_html) if __name__ == '__main__': demo.launch(share = False)