SemSup-XC / cleaned_code /src /training_arguments.py
Pranjal2041's picture
Initial Commit
4014562
from typing import Optional
from dataclasses import dataclass, field
from .constants import task_to_keys
from transformers import TrainingArguments
@dataclass
class CustomTrainingArguments(TrainingArguments):
output_learning_rate: Optional[float] = field(
default=5e-5,
metadata={"help": "The learning rate for the output encodeer of the model."}
)
place_model_on_device: Optional[bool] = field(
default=True,
metadata={"help" : "Useful if doing hyperparam search"}
)
scenario: Optional[str] = field(
default="seen", # Options: seen, unseen_labels
metadata={"help": "The scenario to use for training."}
)
one_hour_job : Optional[bool] = field(
default = False,
metadata = {"help" : "Incase its a sequence of jobs, we will do advance management of checkpoints."}
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
Using `HfArgumentParser` we can turn this class
into argparse arguments to be able to specify them on
the command line.
"""
all_labels : Optional[str] = field(
default=None,
metadata={"help": "The file containing all the labels. Mandatory if doing unseen labels"}
)
test_labels : Optional[str] = field(
default=None,
metadata={"help": "The file containing all the test labels."}
)
max_descs_per_label : Optional[int] = field(
default = 999999,
metadata={"help": "Restrict number of descriptions to be included per label"}
)
task_name: Optional[str] = field(
default=None,
metadata={"help": "The name of the task to train on: " + ", ".join(task_to_keys.keys())},
)
dataset_name: Optional[str] = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
max_seq_length: int = field(
default=128,
metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
)
pad_to_max_length: bool = field(
default=True,
metadata={
"help": (
"Whether to pad all samples to `max_seq_length`. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
)
},
)
load_from_local: bool = field(
default=False,
metadata={"help": "Whether to load the dataset from local or not."},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
},
)
max_predict_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of prediction examples to this "
"value if set."
)
},
)
train_file: Optional[str] = field(
default=None, metadata={"help": "A csv or a json file containing the training data."}
)
validation_file: Optional[str] = field(
default=None, metadata={"help": "A csv or a json file containing the validation data."}
)
test_file: Optional[str] = field(default=None, metadata={"help": "A csv or a json file containing the test data."})
label_max_seq_length: int = field(default=32)
contrastive_learning_samples : Optional[int] = field(
default=-1,
metadata={"help": "Number of samples to use for contrastive learning."},
)
cl_min_positive_descs : Optional[int] = field(
default=20,
metadata={"help": "Minimum number of positive descriptions to use for contrastive learning."},
)
descriptions_file : Optional[str] = field(
# default='datasets/EUR-Lex/all_descriptions.json',
default='datasets/EUR-Lex/eurlex-4k-class_descriptions_v1.json',
metadata={"help": "A json file containing the descriptions."},
)
test_descriptions_file : Optional[str] = field(
default='', # If empty, automatically make equal to descriptions_file
metadata={"help": "A json file containing the test descriptions."},
)
cluster_path: Optional[str] = field(
default='datasets/EUR-Lex/label_group_lightxml_0.npy',
metadata={"help": "Path to the cluster file."},
)
num_clusters: int = field(
default=64,
metadata={"help": "Number of clusters in the cluster file."},
)
hyper_search: bool = field(
default=False,
metadata={"help": "Perform Hp Search"},
)
bm_short_file: str = field(
default = '',
metadata = {"help": "BM Shortlist File to use for contrastive sampling"}
)
large_dset: bool = field(
default = False,
metadata = {"help" : "Dataset is modified in a way such that whole train set is not loaded"}
)
tokenized_descs_file: bool = field(
default = False,
metadata = {"help" : "Load the precomputed tokenized descriptions to speed up the process"}
)
train_tfidf_short: str = field(
default = '',
metadata = {"help" : "Shortlists based on the tf-idf values"}
)
test_tfidf_short: str = field(
default = '',
metadata = {"help" : "Shortlists based on the tf-idf values"}
)
ignore_pos_labels_file : str = field(
default = '',
metadata = {"help" : "Useful in fs setting"}
)
tok_format: int = field(
default = -1,
metadata = {"help" : "Tokenized Format for large datasets"}
)
coil_cluster_mapping_path : str = field(
default = '',
metadata = {"help" : "Clustering for coil matching based on BERT"}
)
random_sample_seed: int = field(
default=-1,
metadata={"help": "Random seed for eval sampling"},
)
def __post_init__(self):
if self.task_name is not None:
self.task_name = self.task_name.lower()
if self.task_name not in task_to_keys.keys():
raise ValueError("Unknown task, you should pick one in " + ",".join(task_to_keys.keys()))
elif self.dataset_name is not None:
pass
elif self.train_file is None or self.validation_file is None:
raise ValueError("Need either a GLUE task, a training/validation file or a dataset name.")
else:
train_extension = self.train_file.split(".")[-1]
assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file."
validation_extension = self.validation_file.split(".")[-1]
assert (
validation_extension == train_extension
), "`validation_file` should have the same extension (csv or json) as `train_file`."
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": (
"Will use the token generated when running `transformers-cli login` (necessary to use this script "
"with private models)."
)
},
)
ignore_mismatched_sizes: bool = field(
default=False,
metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."},
)
negative_sampling: Optional[str] = field(
default="none",
metadata={"help": "Whether to use negative sampling or not. Can be either `lightxml` or `none`."},
)
semsup : Optional[bool] = field(
default=False,
metadata={"help": "Whether to use semantic supervision or not."},
)
label_model_name_or_path: Optional[str] = field(
default='bert-base-uncased',
metadata={"help": "The name or path of the label model to use."},
)
encoder_model_type: Optional[str] = field(
default = 'bert',
metadata={"help": "Type of encoder to use. Options: bert, roberta, xlnet"},
)
use_custom_optimizer: Optional[str] = field(
default=None,
metadata={"help": "Custom optimizer to use. Options: adamw"},
)
arch_type: Optional[int] = field(
default=2,
metadata={"help": '''Model architecture to use. Options: 1,2,3.\n1 -> LightXML Based\n2 -> No hidden layer\n3 -> Smaller Embedding Size'''},
)
devise: Optional[bool] = field(
default = False,
metadata = {"help" : 'Use Device Baseline'}
)
add_label_name : Optional[bool] = field(
default = False,
metadata = {"help" : "Adds label name in beginning of all descriptions"}
)
normalize_embeddings : Optional[bool] = field(
default = False,
metadata = {"help" : "Normalize Embeddings of input and output encoders before inner product."}
)
tie_weights : Optional[bool] = field(
default = False,
metadata = {"help" : "Tie the Input & Label Transformer Weights(First 11 Layers) ."}
)
coil : Optional[bool] = field(
default = False,
metadata = {"help" : "Use COILBert Variant"}
)
colbert: Optional[bool] = field(
default = False,
metadata = {"help" : "Use COLBert, Note: coil must be set true"}
)
use_precomputed_embeddings : Optional[str] = field(
default = '',
metadata = {"help" : "PreComputed Embeddings Upto Level 9 of Bert for descriptions"}
)
token_dim : Optional[int] = field(
default = 16,
metadata = {"help": "Token Dimension for COILBert"}
)
pretrained_model_path : Optional[str] = field(
default = '',
metadata = {"help" : "Use Pretrained Model for Finetuning (few shot setting)"}
)
pretrained_label_model_path : Optional[str] = field(
default = '',
metadata = {"help" : "Use Pretrained Label Model for Finetuning (few shot setting)"}
)
num_frozen_layers : Optional[int] = field(
default = 0,
metadata = {
"help" : "Freeze Input Encoder Layer"
}
)
label_frozen_layers : Optional[int] = field(
default = 0,
metadata = {
"help" : "Freeze Input Encoder Layer"
}
)