SemSup-XC / model.py
Pranjal2041's picture
Initial Commit
4014562
raw
history blame
9.89 kB
PROJECT_PATH = 'cleaned_code'
import os
import sys
sys.path.append(PROJECT_PATH)
import numpy as np
import pickle
import h5py
from tqdm import tqdm
from transformers import AutoTokenizer
from scipy.special import expit
import torch
from typing import Optional
import json
from src import BertForSemanticEmbedding, getLabelModel
from src import DataTrainingArguments, ModelArguments, CustomTrainingArguments, read_yaml_config
from src import dataset_classification_type
from src import SemSupDataset
from transformers import AutoConfig, HfArgumentParser, AutoTokenizer
import torch
import json
from tqdm import tqdm
device = 'cuda' if torch.cuda.is_available() else 'cpu'
def compute_tok_score_cart(doc_reps, doc_input_ids, qry_reps, qry_input_ids, qry_attention_mask):
qry_input_ids = qry_input_ids.unsqueeze(2).unsqueeze(3) # Q * LQ * 1 * 1
doc_input_ids = doc_input_ids.unsqueeze(0).unsqueeze(1) # 1 * 1 * D * LD
exact_match = doc_input_ids == qry_input_ids # Q * LQ * D * LD
exact_match = exact_match.float()
scores_no_masking = torch.matmul(
qry_reps.view(-1, 16), # (Q * LQ) * d
doc_reps.view(-1, 16).transpose(0, 1) # d * (D * LD)
)
scores_no_masking = scores_no_masking.view(
*qry_reps.shape[:2], *doc_reps.shape[:2]) # Q * LQ * D * LD
scores, _ = (scores_no_masking * exact_match).max(dim=3) # Q * LQ * D
tok_scores = (scores * qry_attention_mask.reshape(-1, qry_attention_mask.shape[-1]).unsqueeze(2))[:, 1:].sum(1)
return tok_scores
def coil_fast_eval_forward(
input_ids: Optional[torch.Tensor] = None,
doc_reps = None,
logits: Optional[torch.Tensor] = None,
desc_input_ids = None,
desc_attention_mask = None,
lab_reps = None,
label_embeddings = None
):
tok_scores = compute_tok_score_cart(
doc_reps, input_ids,
lab_reps, desc_input_ids.reshape(-1, desc_input_ids.shape[-1]), desc_attention_mask
)
logits = (logits.unsqueeze(0) @ label_embeddings.T)
new_tok_scores = torch.zeros(logits.shape, device = logits.device)
for i in range(tok_scores.shape[1]):
stride = tok_scores.shape[0]//tok_scores.shape[1]
new_tok_scores[i] = tok_scores[i*stride: i*stride + stride ,i]
return (logits + new_tok_scores).squeeze()
class DemoModel:
def __init__(self, ):
self.label_list = [x.strip() for x in open(f'{PROJECT_PATH}/datasets/Amzn13K/all_labels.txt')]
unseen_label_list = [x.strip() for x in open(f'{PROJECT_PATH}/datasets/Amzn13K/unseen_labels_split6500_2.txt')]
num_labels = len(self.label_list)
self.label_list.sort() # For consistency
l2i = {v: i for i, v in enumerate(self.label_list)}
unseen_label_indexes = [l2i[x] for x in unseen_label_list]
self.coil_cluster_map = json.load(open(f'{PROJECT_PATH}/bert_coil_map_dict_lemma255K_isotropic.json'))
all_lab_reps1, all_label_embeddings1, all_desc_input_ids_orig1, all_desc_input_ids1, all_desc_attention_mask1 = pickle.load(open(f'{PROJECT_PATH}/precomputed/Amzn13K/amzn_base_labels_data1_1.pkl','rb'))
all_lab_reps2, all_label_embeddings2, all_desc_input_ids_orig2, all_desc_input_ids2, all_desc_attention_mask2 = pickle.load(open(f'{PROJECT_PATH}/precomputed/Amzn13K/amzn_base_labels_data1_2.pkl','rb'))
all_lab_reps3, all_label_embeddings3, all_desc_input_ids_orig3, all_desc_input_ids3, all_desc_attention_mask3 = pickle.load(open(f'{PROJECT_PATH}/precomputed/Amzn13K/amzn_base_labels_data1_3.pkl','rb'))
all_lab_reps4, all_label_embeddings4, all_desc_input_ids_orig4, all_desc_input_ids4, all_desc_attention_mask4 = pickle.load(open(f'{PROJECT_PATH}/precomputed/Amzn13K/amzn_base_labels_data1_4.pkl','rb'))
all_lab_reps5, all_label_embeddings5, all_desc_input_ids_orig5, all_desc_input_ids5, all_desc_attention_mask5 = pickle.load(open(f'{PROJECT_PATH}/precomputed/Amzn13K/amzn_base_labels_data1_5.pkl','rb'))
self.all_lab_reps = [all_lab_reps1.to(device), all_lab_reps2.to(device), all_lab_reps3.to(device), all_lab_reps4.to(device), all_lab_reps5.to(device)]
self.all_label_embeddings = [all_label_embeddings1.to(device), all_label_embeddings2.to(device), all_label_embeddings3.to(device), all_label_embeddings4.to(device), all_label_embeddings5.to(device)]
self.all_desc_input_ids_orig = [all_desc_input_ids_orig1.to(device), all_desc_input_ids_orig2.to(device), all_desc_input_ids_orig3.to(device), all_desc_input_ids_orig4.to(device), all_desc_input_ids_orig5.to(device)]
self.all_desc_input_ids = [all_desc_input_ids1.to(device), all_desc_input_ids2.to(device), all_desc_input_ids3.to(device), all_desc_input_ids4.to(device), all_desc_input_ids5.to(device)]
self.all_desc_attention_mask = [all_desc_attention_mask1.to(device), all_desc_attention_mask2.to(device), all_desc_attention_mask3.to(device), all_desc_attention_mask4.to(device), all_desc_attention_mask5.to(device)]
ARGS_FILE = f'{PROJECT_PATH}/configs/ablation_amzn_eda.yml'
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments))
self.model_args, self.data_args, self.training_args = parser.parse_dict(read_yaml_config(ARGS_FILE, output_dir = 'demo_tmp', extra_args = {}))
config = AutoConfig.from_pretrained(
self.model_args.config_name if self.model_args.config_name else self.model_args.model_name_or_path,
finetuning_task=self.data_args.task_name,
cache_dir=self.model_args.cache_dir,
revision=self.model_args.model_revision,
use_auth_token=True if self.model_args.use_auth_token else None,
)
config.model_name_or_path = self.model_args.model_name_or_path
config.problem_type = dataset_classification_type[self.data_args.task_name]
config.negative_sampling = self.model_args.negative_sampling
config.semsup = self.model_args.semsup
config.encoder_model_type = self.model_args.encoder_model_type
config.arch_type = self.model_args.arch_type
config.coil = self.model_args.coil
config.token_dim = self.model_args.token_dim
config.colbert = self.model_args.colbert
label_model, label_tokenizer = getLabelModel(self.data_args, self.model_args)
config.label_hidden_size = label_model.config.hidden_size
model = BertForSemanticEmbedding(config)
model.label_model = label_model
model.label_tokenizer = label_tokenizer
model.config.label2id = {l: i for i, l in enumerate(self.label_list)}
model.config.id2label = {id: label for label, id in config.label2id.items()}
self.tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
model.to(device)
model.eval()
torch.set_grad_enabled(False)
model.load_state_dict(torch.load(f'{PROJECT_PATH}/ckpt/Amzn13K/amzn_main_model.bin', map_location = device))
self.model = model
self.extracted_descs = [self.extract_descriptions(adi) for adi in self.all_desc_input_ids_orig]
tot_len = len(self.all_desc_input_ids_orig)
for i in range(len(self.all_desc_input_ids_orig[0])):
for j in range(tot_len):
if self.extracted_descs[j][i] == "":
for k in range(tot_len):
if self.extracted_descs[k][i] != '':
self.extracted_descs[j][i] = self.extracted_descs[k][i]
break
def extract_descriptions(self, input_ids):
descs = self.tokenizer.batch_decode(input_ids, skip_special_tokens = True)
new_descs = []
for desc in descs:
a = desc.find('description is')
if a == -1:
# There is no description to use, lets go with empty
new_descs.append("")
continue
b = min([desc.find(x, a) if desc.find(x, a) !=-1 else 99999999999 for x in ['label is','parents are','children are']])
if b == 99999999999:
new_descs.append(desc[a:].strip())
else:
new_descs.append(desc[a:b].strip())
return new_descs
def classify(self, text, unseen_labels = None):
self.model.eval()
with torch.no_grad():
item = self.tokenizer(text, padding='max_length', max_length=self.data_args.max_seq_length, truncation=True)
item = {k:torch.tensor(v, device = device).unsqueeze(0) for k,v in item.items()}
outputs_doc, logits = self.model.forward_input_encoder(**item)
doc_reps = self.model.tok_proj(outputs_doc.last_hidden_state)
input_ids = torch.tensor([self.coil_cluster_map[str(x.item())] for x in item['input_ids'][0]]).to(device).unsqueeze(0)
all_logits = []
descriptions = []
for adi, ada, alr, ale in zip(self.all_desc_input_ids, self.all_desc_attention_mask, self.all_lab_reps, self.all_label_embeddings):
all_logits.append(coil_fast_eval_forward(input_ids, doc_reps, logits, adi, ada, alr, ale))
final_logits = sum([expit(x.cpu()) for x in all_logits]) / len(all_logits)
max_indices = torch.argmax(torch.stack(all_logits), dim=0).cpu().tolist()
# from pdb import set_trace as bp
# bp()
outs = torch.topk(final_logits, k = 50)
preds_dic = dict()
descs_dic = dict()
for i,v in zip(outs.indices, outs.values):
preds_dic[self.label_list[i]] = v.item()
print(self.extracted_descs[max_indices[i]][i])
descs_dic[self.label_list[i]] = self.extracted_descs[max_indices[i]][i]
return preds_dic, descs_dic
if __name__ == '__main__':
model = DemoModel()
model.classify('Hello')