# Get the dataloaders # There are only two types of dataloaders, viz. VanillaFRCNN and BilaterialFRCNN import torch import cv2 import torchvision.transforms as T import detection.transforms as transforms from torch.utils.data import Dataset,DataLoader import detection.utils as utils import os from tqdm import tqdm import pandas as pd from os.path import join # VanillaFRCNN DataLoaders class FRCNNDataset(Dataset): def __init__(self,inputs,transform): self.transform = transform self.dataset_dicts = inputs def __len__(self): return len(self.dataset_dicts) def __getitem__(self,index: int): # Select the sample record = self.dataset_dicts[index] # Load input and target img = cv2.imread(record['file_name']) target = {k:torch.tensor(v) for k,v in record.items() if k != 'file_name'} if self.transform is not None: img = T.ToPILImage()(img) img,target = self.transform(img,target) return img,target def xml_to_dicts(paths): dataset_dicts = [] i=1 for path in paths: for image in tqdm(os.listdir(os.path.join(path,'mal/images/'))): xmlfile = os.path.join(path,'mal/gt/',image[:-4]+'.txt') if(not os.path.exists(xmlfile)): continue img = cv2.imread(os.path.join(path,'mal/images/',image)) record = {} record['file_name'] = os.path.join(path , 'mal/images/',image) record['image_id'] = i i+=1 record['width'] = img.shape[1] record['height'] = img.shape[0] objs = [] boxes = [] labels = [] area = [] iscrowd = [] f = open(xmlfile,'r') for line in f.readlines(): box = list(map(int,map(float,line.split()[1:]))) boxes.append(box) labels.append(1) area.append((box[2]-box[0])*(box[3]-box[1])) iscrowd.append(False) f.close() record["boxes"] = boxes record["labels"] = labels record["area"] = area record["iscrowd"] = iscrowd if(len(boxes)>0): dataset_dicts.append(record) for image in tqdm(os.listdir(os.path.join(path,'ben/images/'))): img = cv2.imread(os.path.join(path,'ben/images/',image)) record = {} record['file_name'] = os.path.join(path, 'ben/images/',image) record['image_id'] = i i+=1 record['width'] = img.shape[1] record['height'] = img.shape[0] record['boxes'] = torch.tensor([[0,0,img.shape[1],img.shape[0]]]) record['labels'] = torch.tensor([0]) record['area'] = [img.shape[1]*img.shape[0]] record["iscrowd"] = [False] dataset_dicts.append(record) return dataset_dicts def get_FRCNN_dataloaders(cfg, batch_size = 2, data_dir = '../bilateral_new',): transform_test = transforms.Compose([transforms.ToTensor()]) transform_train = transforms.Compose([transforms.RandomHorizontalFlip(),transforms.ToTensor()]) train_paths = [join(data_dir,cfg['AIIMS_DATA'],cfg['AIIMS_TRAIN_SPLIT']),join(data_dir,cfg['DDSM_DATA'],cfg['DDSM_TRAIN_SPLIT']),] val_aiims_path = [join(data_dir,cfg['AIIMS_DATA'],cfg['AIIMS_VAL_SPLIT'])] train_data = FRCNNDataset(xml_to_dicts(train_paths),transform_train) test_aiims = FRCNNDataset(xml_to_dicts(val_aiims_path),transform_test) train_loader = DataLoader(train_data,batch_size=batch_size,shuffle=True,drop_last=True,num_workers=4,collate_fn = utils.collate_fn) test_aiims_loader = DataLoader(test_aiims,batch_size=batch_size,shuffle=True,drop_last=True,num_workers=4,collate_fn = utils.collate_fn) #test_ddsm_loader = DataLoader(test_ddsm,batch_size=2,shuffle=True,drop_last=True,num_workers=5,collate_fn = utils.collate_fn) return train_loader, test_aiims_loader # BilaterialFRCNN DataLoaders def get_direction(dset,file_name): # 1 if right else -1 if dset == 'aiims' or dset == 'ddsm': file_name = file_name.lower() r = file_name.find('right') l = file_name.find('left') if l == r and l == -1: raise Exception(f'Unidentifiable Direction {file_name}') if l!=-1 and r!=-1: raise Exception(f'Unidentifiable Direction {file_name}') return 1 if r!=-1 else -1 if dset == 'inbreast': dir =file_name.split('_')[3] if dir == 'R': return 1 if dir == 'L': return -1 raise Exception(f'Unidentifiable Direction {file_name}') if dset == 'irch': r = file_name.find('_R ') l = file_name.find('_L ') if l == r and l == -1: raise Exception(f'Unidentifiable Direction {file_name}') if l!=-1 and r!=-1: raise Exception(f'Unidentifiable Direction {file_name}') return 1 if r!=-1 else -1 class BilateralDataset(torch.utils.data.Dataset): def __init__(self,inputs,transform,dset): self.transform = transform self.dataset_dicts = inputs self.dset = dset def __len__(self): return len(self.dataset_dicts) def __getitem__(self,index: int): # Select the sample record = self.dataset_dicts[index] # Load input and target img1 = cv2.imread(record['file_name']) img2 = cv2.imread(record['file_2']) target = {k:torch.tensor(v) for k,v in record.items() if k != 'file_name' and k!='file_2'} if self.transform is not None: img1 = T.ToPILImage()(img1) img2 = T.ToPILImage()(img2) if(get_direction(self.dset,record['file_name'].split('/')[-1])==1): img1,target = transforms.RandomHorizontalFlip(1.0)(img1,target) else: img2,_ = transforms.RandomHorizontalFlip(1.0)(img2) img1,target = self.transform(img1,target) img2,target = self.transform(img2,target) images = [img1,img2] return images,target def xml_to_dicts_bilateral(paths,cor_dicts): dataset_dicts = [] i=1 for path,cor_dict in zip(paths,cor_dicts): for image in tqdm(os.listdir(os.path.join(path,'mal/images/'))): if(not os.path.join(path,'mal/images/',image) in cor_dict): continue if(not os.path.isfile(cor_dict[os.path.join(path,'mal/images/',image)])): continue xmlfile = os.path.join(path,'mal/gt/',image[:-4]+'.txt') if(not os.path.exists(xmlfile)): continue img = cv2.imread(os.path.join(path,'mal/images/',image)) record = {} record['file_name'] = os.path.join(path , 'mal/images/',image) record['file_2'] = cor_dict[os.path.join(path,'mal/images/',image)] record['image_id'] = i i+=1 record['width'] = img.shape[1] record['height'] = img.shape[0] objs = [] boxes = [] labels = [] area = [] iscrowd = [] f = open(xmlfile,'r') for line in f.readlines(): box = list(map(int,map(float,line.split()[1:]))) boxes.append(box) labels.append(1) area.append((box[2]-box[0])*(box[3]-box[1])) iscrowd.append(False) f.close() record["boxes"] = boxes record["labels"] = labels record["area"] = area record["iscrowd"] = iscrowd if(len(boxes)>0): dataset_dicts.append(record) for image in tqdm(os.listdir(os.path.join(path,'ben/images/'))): if(not os.path.join(path,'ben/images/',image) in cor_dict): continue if(not os.path.isfile(cor_dict[os.path.join(path,'ben/images/',image)])): continue img = cv2.imread(os.path.join(path,'ben/images/',image)) record = {} record['file_name'] = os.path.join(path , 'ben/images/',image) record['file_2'] = cor_dict[os.path.join(path,'ben/images/',image)] img2 = cv2.imread(cor_dict[os.path.join(path,'ben/images/',image)]) record['image_id'] = i i+=1 record['width'] = img.shape[1] record['height'] = img.shape[0] record["boxes"] = torch.tensor([[0,0,min(img.shape[1],img2.shape[1]),min(img.shape[0],img2.shape[0])]]) record['labels'] = torch.tensor([0]) record['area'] = [ min(img.shape[1],img2.shape[1]) *min(img.shape[0],img2.shape[0])] record["iscrowd"] = [False] if(len(boxes)>0): dataset_dicts.append(record) return dataset_dicts def get_dict(data_dir, filename): df = pd.read_csv(filename, header=None, sep=r'\s+', quotechar='"').to_numpy() cor_dict = dict() for a in df: if(a[0]==a[1]): continue cor_dict[a[0]] = a[1] # print(cor_dict) cor_dict = {join(data_dir,k):join(data_dir,v) for k,v in cor_dict.items()} return cor_dict def get_bilateral_dataloaders(cfg, batch_size = 1, data_dir = '../bilateral_new'): transform_test = transforms.Compose([transforms.ToTensor()]) transform_train = transforms.Compose([transforms.RandomHorizontalFlip(),transforms.ToTensor()]) train_paths = [join(data_dir,cfg['AIIMS_DATA'],cfg['AIIMS_TRAIN_SPLIT']),join(data_dir,cfg['DDSM_DATA'],cfg['DDSM_TRAIN_SPLIT']),] val_aiims_path = [join(data_dir,cfg['AIIMS_DATA'],cfg['AIIMS_VAL_SPLIT'])] cor_lists_train = [get_dict(data_dir,join(data_dir,cfg['AIIMS_CORRS_LIST'])),get_dict(data_dir,join(data_dir,cfg['DDSM_CORRS_LIST']))] cor_lists_val = [get_dict(data_dir,join(data_dir,cfg['AIIMS_CORRS_LIST']))] cor_lists_train = [get_dict(data_dir,join(data_dir,cfg['AIIMS_CORRS_LIST']))] train_data = BilateralDataset(xml_to_dicts_bilateral(train_paths,cor_lists_train),transform_test,'aiims') val_aiims = BilateralDataset(xml_to_dicts_bilateral(val_aiims_path,cor_lists_val),transform_test,'aiims') train_loader = DataLoader(train_data,batch_size=batch_size,shuffle=True,drop_last=True,num_workers=4,collate_fn = utils.collate_fn) val_aiims_loader = DataLoader(val_aiims,batch_size=batch_size,shuffle=True,drop_last=True,num_workers=4,collate_fn = utils.collate_fn) #test_ddsm_loader = DataLoader(test_ddsm,batch_size=2,shuffle=True,drop_last=True,num_workers=5,collate_fn = utils.collate_fn) return train_loader, val_aiims_loader