|
import os |
|
import torch |
|
from os.path import join |
|
from model_utils import generate_predictions, generate_predictions_bilateral |
|
from models import get_FRCNN_model, Bilateral_model |
|
from froc_by_pranjal import get_froc_points |
|
|
|
|
|
exp_name = 'AIIMS_C3' |
|
OUT_FILE = 'ib_results/c3_frcnn.txt' |
|
BILATERAL = False |
|
dataset_path = 'INBREAST_C3/test' |
|
|
|
|
|
|
|
|
|
|
|
if os.path.split(OUT_FILE)[0]: |
|
os.makedirs(os.path.split(OUT_FILE)[0], exist_ok=True) |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
frcnn_model = get_FRCNN_model().to(device) |
|
|
|
if BILATERAL: |
|
model = Bilateral_model(frcnn_model).to(device) |
|
MODEL_PATH = f'experiments/{exp_name}/bilateral_models/bilateral_model.pth' |
|
model.load_state_dict(torch.load(MODEL_PATH)) |
|
else: |
|
model = frcnn_model |
|
MODEL_PATH = f'experiments/{exp_name}/frcnn_models/frcnn_model.pth' |
|
model.load_state_dict(torch.load(MODEL_PATH)) |
|
|
|
|
|
test_path = join('../bilateral_new', 'MammoDatasets',dataset_path) |
|
|
|
|
|
def get_inbreast_dict(test_path, corr_file): |
|
extract_file = lambda x: x[x.find('test/')+5:] |
|
corr_dict = {extract_file(line.split()[0]):extract_file(line.split()[1]) for line in open(corr_file).readlines()} |
|
corr_dict = {join(test_path,k):join(test_path,v) for k,v in corr_dict.items()} |
|
return corr_dict |
|
|
|
if BILATERAL: |
|
pred_dir = f'preds_bilateral_{exp_name}' |
|
generate_predictions_bilateral(model,device,test_path, get_inbreast_dict(test_path, '../bilateral_new/corr_lists/Inbreast_final_correspondence_list.txt'),'inbreast',pred_dir) |
|
else: |
|
pred_dir = f'preds_frcnn_{exp_name}' |
|
generate_predictions(model, device, test_path, preds_folder = pred_dir) |
|
|
|
|
|
file = open(OUT_FILE, 'a') |
|
file.writelines(f'{exp_name} FROC Score:\n') |
|
senses, fps = get_froc_points(pred_dir, root_fol= test_path) |
|
for s,f in zip(senses, fps): |
|
file.writelines(f'Sensitivty at {f}: {s}\n') |
|
file.close() |
|
|
|
|